

PROJECT MANUAL

CONTRACTUAL – LEGAL REQUIREMENTS TECHNICAL SPECIFICATIONS

FOR

West Hills College Coalinga Chiller Replacement

Project No.: 22-12358

District Bid No.:

DSA File No.: 10-C1

DSA Appl. No.: 02-120711

Set	No.:	
-		

SECTION 000107 SEALS PAGE

IDENTIFICATION STAMP DIV. OF THE STATE ARCHITECT

APP: 02-120711 INC: **REVIEWED FOR**

ss 🗹 DATE: FLS 🗹 ACS 🗌

03/16/2023

Architect Aya Shitanishi Teter, LLP

7535 North Palm Ave., Suite 201

Fresno, California 93711 Phone: (559) 437-0887 Fax: (559) 438-7554

Mechanical Engineer Steven Jones Teter, LLP 7535 North Palm Ave., Suite 201 Fresno, California 93711

Phone: (559) 437-0887 Fax: (559) 438-7554

Electrical Engineer Bryan Glass Teter, LLP 7535 North Palm Ave., Suite 201 Fresno, California 93711

Phone: (559) 437-0887 Fax: (559) 438-7554

SECTION 000110 TABLE OF CONTENTS

West Hills College Coalinga Chiller Replacement

<u>IN I ROD</u>	UCTORY INFORMATION	PAGES
000101	PROJECT TITLE PAGE	1
000107	SEALS PAGE	
000110	TABLE OF CONTENTS	
DIVISIO	N 00 CONTRACT REQUIREMENTS	PAGES
TO BE P	PROVIDED BY DISTRICT	
<u>DIVISIO</u>	N 01 GENERAL REQUIREMENTS	PAGES
011100	SUMMARY OF WORK	4
011103	ADDENDA	
011105	USE OF ARCHITECTS ELECTRONIC FILES	
012500	SUBSTITUTION PROCEDURES	
012600	CONTRACT MODIFICATION PROCEDURES	
012605	DSA HOURLY FEE SERVICES	
012613	REQUEST FOR INFORMATION	5
012900	PAYMENT PROCEDURES	
013113	PROJECT MANAGEMENT AND COORDINATION	
013119	PROJECT MEETINGS	
013200	CONSTRUCTION PROGRESS DOCUMENTATION	
013233	PHOTOGRAPHIC DOCUMENTATION	
013300	SUBMITTAL PROCEDURES	
014000	QUALITY AND TESTING REQUIREMENTS	
014200	REFERENCES	
015000	TEMPORARY FACILITIES AND CONTROLS	
015116	FIRE SAFETY DURING CONSTRUCTION	
016000	PRODUCT REQUIREMENTS	
017300	EXECUTION	
017419	CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL	
017700	CLOSEOUT PROCEDURES	
017823	OPERATION AND MAINTENANCE DATA	
017836	WARRANTIES	
017839	PROJECT RECORD DRAWINGS	
017900	DEMONSTRATION AND TRAINING	
018113	SUSTAINABLE DESIGN REQUIREMENTS	

DIVISION 02	EXISTING CONDITIONS	PAGES
(NOT USED)		
DIVISION 03	CONCRETE	PAGES
	INSTALLED CONCRETE ANCHORS	
033000 CAST	-IN-PLACE CONCRETE	28
DIVISION 04	MASONRY	PAGES
(NOT USED)	MAGGIRT	TAGEG
()		
DIVISION 05	METALS	PAGES
(NOT USED)		
DIVISION 06	WOOD AND PLASTICS	PAGES
(NOT USED)	WOOD AND I EACHOO	I AGEO
()		
DIVISION 07	THERMAL AND MOISTURE PROTECTION	PAGES
(NOT USED)		
DIVISION 08	DOORS AND WINDOWS	PAGES
(NOT USED)		17.020
,		
DIVISION 09	FINISHES	PAGES
(NOT USED)		
DIVISION 10	SPECIALITES	PAGES
(NOT USED)		
DIVISION 11	EQUIPMENT	<u>PAGES</u>
(NOT USED)		
DIVISION 12	FURNISHINGS	PAGES
(NOT USED)		
DIVISION 13	SPECIAL CONSTRUCTION	PAGES
(NOT USED)		

<u>DIVISION</u>	1 14 CONVEYING SYSTEMS	PAGES
(NOT USE	ED)	
DIVISION	IS 15 – 20 (RESERVED)	PAGES
(NOT USE	ED)	
DIVISION	1 21 FIRE SUPPRESSION	PAGES
(NOT USE	ED)	
DIVISION	1 22 PLUMBING	PAGES
220000 220050	GENERAL PLUMBING PROVISIONSPLUMBING	
DIVISION	123 MECHANICAL	PAGES
230100	GENERAL MECHANICAL PROVISIONS	
230500	COMMON WORK RESULTS FOR HVAC	13
230513	COMMON MOTOR REQUIREMENTS FOR HVAC	
230519	METERS AND GAGES FOR HVAC PIPING	
230523	GENERAL-DUTY VALVES FOR HVAC PIPING	
230529	HANGERS AND SUPPORTS FOR HVAC PIPING	
230548	VIBRATION AND SEISMIC CONTROLS FOR HV	
230553	IDENTIFICATION FOR HVAC PIPING AND EQUI	
230593 230700	TESTING, ADJUSTING, AND BALANCING FOR	
230700 230923	HVAC INSULATION DIRECT-DIGITAL CONTROL SYSTEM FOR HVA	
230923 231710	VARIABLE FREQUENCY DRIVES	
232113	HYDRONIC PIPING	
	3 UNDERGROUND HYDRONIC PIPING	
	HYDRONIC PUMPS	
	SCROLL WATER CHILLERS	
DIVISION	25 INTEGRATED AUTOMATION	PAGES
(NOT USE	ED)	
DIVISION	1 26 ELECTRICAL	PAGES
260000	SUMMARY OF ELECTRICAL WORK	
260100	GENERAL CONDITIONS FOR ELECTRICAL WC	PRK 10
260500	BASIC ELECTRICAL MATERIALS AND METHOD	DS25
260526	GROUNDING	
262413		
269500	ELECTRICAL ACCEPTANCE TESTS	15

22-12358 TABLE OF CONTENTS 000110 – 3 of 4

DIVISION 2	27 COMMUNICATIONS	PAGES
(NOT USE	D)	
DIVISION 2	28 ELECTRONIC SAFETY AND SECURITY	PAGES
(NOT USE	D)	
DIVISION 3	31 EARTHWORK	PAGES
311100	SITE CLEARING	6
312000	EARTHWORK	9
312005	TRENCHING	
315000	EXCAVATION SUPPORT AND PROTECTION	4
DIVISION 3	32 EXTERIOR IMPROVEMENTS	PAGES
321313	CONCRETE PAVING AND WALKS	12
323113	CHAIN LINK FENCES AND GATES	7
DIVISION 3	33 UTILITIES	PAGES PAGES
(NOT USE	D)	
<u>APPENDIX</u>	TITLE	PAGES
(NOT USE	D)	

END OF SECTION

22-12358 TABLE OF CONTENTS 000110 – 4 of 4

SECTION 001113 NOTICE TO CONTRACTORS CALLING FOR BIDS

Notice is hereby given that the governing board ("Board") of the West Hills Community College District ("District") will receive sealed bids for the following project:

Project Bid: WEST HILLS COLLEGE COALINGA CHILLER REPLACEMENT BLDG. H

Sealed Bids will be received until **2:00 p.m., Feb 29, 2024** at the Purchasing Department Office, West Hills Community College District, 275 Phelps Ave., Coalinga, CA 93210, at or after which time the bids will be opened and publicly read aloud. Any claim by a bidder of error in its bid must be made in compliance with section 5100 et seq. of the Public Contract Code. Any bid that is submitted after this time shall be non-responsive and returned to the bidder. **The engineer's estimate is \$622,500.00.**

The project consists of removing two (2) existing cooling towers and two (2) existing water-cooled chillers located in the mechanical room of Building B and to construct a new mechanical yard and install one (1) air-cooled chiller within the new yard. Scope of work includes but is not limited to selective demolition; HVAC; electrical supply; low voltage systems; and door/louver modifications.

To bid on this Project, the Bidder is required to possess at a minimum the following State of California Contractor License and Certification: A California Class A, B and/or C20 contractor's license is required to Bid this contract. The Bidder's license(s) must remain active and in good standing throughout the term of the Contract.

A bid bond by an admitted California surety insurer on the form provided by the District in the amount of ten percent (10%) of the total bid price, shall accompany the Bid Form and Proposal, as a guarantee that the Bidder will, within seven (7) days after the date of the Notice of Award, enter into a contract with the District for the performance of the services as stipulated in the bid.

The successful Bidder shall be required to furnish a 100% Performance Bond and a 100% Payment Bond if it is awarded the contract for the Work. The successful Bidder may substitute securities for any monies withheld by the District to ensure performance under the Contract, in accordance with the provisions of section 22300 of the Public Contract Code.

The Contractor and all Subcontractors under the Contractor shall pay all workers on all work performed pursuant to this Contract not less than the general prevailing rate of per diem wages and the general prevailing rate for holiday and overtime work as determined by the Director of the Department of Industrial Relations, State of California, for the type of work performed and the locality in which the work is to be performed within the boundaries of the District, pursuant to sections 1770 et seq. of the California Labor Code. Prevailing wage rates are also available from the District or on the Internet at: http://www.dir.ca.gov. If this Project is funded in whole or in part with State bond funds, the District and/or its designee will be operating a labor compliance program on this Project pursuant to Labor Code section 1771.7.

This Project is subject to labor compliance monitoring and enforcement by the Department of Industrial Relations pursuant to Labor Code section 1771.4 and subject to the requirements of Title 8 of the California Code of Regulations. The Contractor and all Subcontractors under the

Contractor shall furnish electronic certified payroll records directly to the Labor Commissioner weekly or within (10) days of any request by the District or the Labor Commissioner. The successful bidder shall comply with all requirements of Division 2, Part 7, Chapter 1, of the Labor Code.

Pursuant to SB 854, no contractor or subcontractor may be listed on a bid for a public works project (submitted on or after March 1, 2015) unless registered with the Department of Industrial Relations (DIR) and no contractor or subcontractor may be awarded a contract for a public works project (awarded on or before April 1, 2015) unless registered with the DIR per California Labor Code section 1725.5

A mandatory pre-bid conference and site visit will be held on **Feb 15, 2024 at 10:00 am** at West Hills Coalinga College Campus, 300 W Cherry Ln, Coalinga, California at the Maintenance/Operations Building main entrance. All participants are required to sign in. The pre-bid conference is expected to take approximately one hour.

Contract Documents are available for review and distribution electronically, bidders shall access the bid documents from the West Hills Community College District Purchasing site: https://westhillscollege.com/district/departments/business-services/purchasing/. To obtain further bid information call the Purchasing Department at (559) 934-2100. For project specific information, contact TETER at (559) 437-0887, email: sophia.nyberg@teterae.com.

WEST HILLS COMMUNITY COLLEGE DISTRICT

PUBLISHED: February 1, 2024

DOCUMENT 00 21 13

INSTRUCTIONS TO BIDDERS

Contractors shall follow the instructions in this document, and shall submit all documents, forms, and information required for consideration of a Bid.

West Hills Community College District ("District") will evaluate information submitted by the apparent low Bidder and, if incomplete or unsatisfactory to District, Bidder's bid may be rejected at the sole discretion of District.

1. Bids are requested for a general construction contract, or work described in general, for the following project ("Project"):

Project Bid: WEST HILLS COLLEGE COALINGA CHILLER REPLACEMENT BLDG. H

- 2. District will receive sealed Bids from Bidders as stipulated in the Notice to Contractors.
- Bidders must submit Bids on the Bid Form and Proposal and all other required District forms. Bids not submitted on the District's required forms shall be deemed non-responsive and shall not be considered. Additional sheets required to fully respond to requested information are permissible.
- 4. Bidders must supply all information required by each Bid Document. Bids must be full and complete. District reserves the right in its sole discretion to reject any Bid as non-responsive as a result of any error or omission in the Bid. Bidders must complete and submit all of the following documents with the Bid Form and Proposal:
 - a. Bid Bond on the District's form or other security
 - b. Designated Subcontractors List
 - c. Non-collusion Affidavit
 - d. Verification Of Contractor And Subcontractors' DIR Registration
- 5. Bidders must submit with their Bids cash, a cashier's check or a certified check payable to District, or a bid bond by an admitted surety insurer of not less than ten percent (10%) of amount of base Bid, plus all additive alternates. If Bidder chooses to provide a Bid Bond as security, Bidder must use the required form of corporate surety provided by District. The Surety on Bidder's Bid Bond must be an insurer admitted in the State of California and authorized to issue surety bonds in the State of California. Bids submitted without necessary bid security will be deemed non- responsive and will not be considered.
- 6. If Bidder to whom Contract is awarded fails or neglects to enter into Contract and submit required bonds, insurance certificates, and all other required documents, within SEVEN (7) calendar days after the date of the Notice of Award, District may deposit Bid Bond, cash, cashier's check, or certified check for collection, and proceeds thereof may be retained by District as liquidated damages for failure of Bidder to enter into Contract, in the sole discretion of District. It is agreed that calculation of damages District may suffer as a result of Bidder's failure to enter into the Contract would be extremely difficult and impractical to determine and that the amount of the Bidder's required bid security shall be the agreed and conclusively presumed amount of damages.

- 7. Bidders must submit with the Bid the Designated Subcontractors List for those subcontractors who will perform any portion of Work, including labor, rendering of service, or specially fabricating and installing a portion of the Work or improvement according to detailed drawings contained in the plans and specifications, in excess of one half of one percent (0.5%) of total Bid. All of the listed subcontractors are required to be registered as a public works contractor with the Department of Industrial Relations. The subcontractor's registration must remain active throughout the term of the Contract. Failure to submit this list when required by law shall result in Bid being deemed non-responsive and the Bid will not be considered.
 - a. An inadvertent error in listing the California contractor license number on the Designated Subcontractors List shall not be grounds for filing a bid protestor grounds for considering the bid nonresponsive if the correct contractor's license number is submitted to the District within 24 hours after the bid opening and the corrected number corresponds with the submitted name and location for that subcontractor.
 - b. An inadvertent error listing an unregistered subcontractor shall not be grounds for filing a bid protest or grounds for considering the bid nonresponsive provided that any of the following apply:
 - (1) The subcontractor is registered prior to the bid opening.
 - (2) The subcontractor is registered and has paid the penalty registration fee within 24 hours after the bid opening.
 - (3) The subcontractor is replaced by another registered subcontractor pursuant to Public Contract Code section 4107.
- 8. If a mandatory pre-bid conference and site visit ("Site Visit") is requested as referenced in the Notice to Contractors, then Bidders must submit the Site-Visit Certification with their Bid. District will transmit to all prospective Bidders of record such Addenda as District in its discretion considers necessary in response to questions arising at the Site Visit. Oral statements shall not be relied upon and will not be binding or legally effective. Addenda issued by the District as a result of the Site Visit, if any, shall constitute the sole and exclusive record and statement of the results of the Site Visit.
- 9. Bidders shall submit the Noncollusion Declaration with their Bids. Bids submitted without the Noncollusion Declaration shall be deemed non-responsive and will not be considered.
- 10. Bids shall be clearly written without erasure or deletions. District reserves the right to reject any Bid containing erasures or deletions.
- 11. Bidders shall not modify the Bid Form and Proposal or qualify their Bids. Bidders shall not submit to the District a scanned, re-typed, word-processed, or otherwise recreated version of the Bid Form and Proposal or other District-provided document.

- 12. The Bidder and all Subcontractors under the Contractor shall pay all workers on all work performed pursuant to this Contract not less than the general prevailing rate of per diem wages and the general prevailing rate for holiday and overtime work as determined by the Director of the Department of Industrial Relations, State of California, for the type of work performed and the locality in which the work is to be performed within the boundaries of the District, pursuant to sections 1770 et seq. of the California Labor Code. Copies of the general prevailing rates of per diemwages for each craft, classification, or type of worker needed to execute the Contract, as determined by Director of the State of California Department of Industrial Relations, are available upon request at the District's principal office. Prevailing wage rates are also available on the internet at http://www.dir.ca.gov.
- 13. Submission of Bid signifies careful examination of Contract Documents and complete understanding of the nature, extent, and location of Work to be performed. Bidders must complete the tasks listed below as a condition to bidding, and submission of a Bid shall constitute the Bidder's express representation to District that Bidder has fully completed the following:
 - a. Bidder has visited the Site, if required, and has examined thoroughly and understood the nature and extent of the Contract Documents, Work, Site, locality, actual conditions, as-built conditions, and all local conditions and federal, state and local laws, and regulations that in any manner may affect cost, progress, performance, or furnishing of Work or that relate to any aspect of the means, methods, techniques, sequences, or procedures of construction to be employed by Bidder and safety precautions and programs incident thereto;
 - b. Bidder has conducted or obtained and has understood all examinations, investigations, explorations, tests, reports, and studies that pertain to the subsurface conditions, as-built conditions, underground facilities, and all other physical conditions at or contiguous to the Site or otherwise that may affect the cost, progress, performance, or furnishing of Work, as Bidder considers necessary for the performance or furnishing of Work at the Contract Sum, within the Contract Time, and in accordance with the other terms and conditions of Contract Documents, including specifically the provisions of the General Conditions; and no additional examinations, investigations, explorations, tests, reports, studies, or similar information or data are or will be required by Bidder for such purposes:
 - Bidder has correlated its knowledge and the results of all such observations, examinations, investigations, explorations, tests, reports, and studies with the terms and conditions of the Contract Documents;
 - d. Bidder has given the District prompt written notice of all conflicts, errors, ambiguities, or discrepancies that it has discovered in or among the Contract Documents and the actual conditions, and the written resolution thereof by the District is acceptable to Bidder;
 - e. Bidder has made a complete disclosure in writing to the District of all facts bearing upon any possible interest, direct or indirect, that Bidder believes any representative of the District or other officer or employee of the District presently has or will have in this Contract or in the performance thereof or in any por-

tion of the profits thereof;

- f. Bidder must, prior to bidding, perform the work, investigations, research, and analysis required by this document and that Bidder represented in its Bid Form and Proposal and the Agreement that it performed prior to bidding. Contractor under this Contract is charged with all information and knowledge that a reasonable bidder would ascertain from having performed this required work, investigation, research, and analysis. Bid prices must include entire cost of all work "incidental" to completion of the Work.
- g. Conditions Shown on the Contract Documents: Information as to underground conditions, as-built conditions, or other conditions or obstructions, indicated in the Contract Documents, e.g., on Drawings or in Specifications, has been obtained with reasonable care, and has been recorded in good faith. However, District only warrants, and Contractor may only rely, on the accuracy of limited types of information.
 - (1) As to above-ground conditions or as-built conditions shown or indicated in the Contract Documents, there is no warranty, express or implied, or any representation express or implied, that such information is correctly shown or indicated. This information is verifiable by independent investigation and Contractor is required to make such verification as a condition to bidding. In submitting its Bid, Contractor shall rely on the results of its own independent investigation. In submitting its Bid, Contractor shall not rely on District-supplied information regarding above-ground conditions or as-built conditions.
 - (2) As to any subsurface condition shown or indicated in the Contract Documents, Contractor may rely only upon the general accuracy of actual reported depths, actual reported character of materials, actual reported soil types, actual reported water conditions, or actual obstructions shown or indicated. District is not responsible for the completeness of such information for bidding or construction; nor is District responsible in any way for any conclusions or opinions of Contractor drawn from such information; nor is the District responsible for subsurface conditions that are not specifically shown (for example, District is not responsible for soil conditions in areas contiguous to areas where a subsurface condition is shown).
 - h. Conditions Shown in Reports and Drawings Supplied for Informational Purposes: Reference is made to the document entitled Geotechnical Data, and the document entitled Existing Conditions, for identification of:
 - (1) Subsurface Conditions: Those reports of explorations and tests of subsurface conditions at or contiguous to the Site that have been utilized by Architect in preparing the Contract Documents; an
 - (2) Physical Conditions: Those drawings of physical conditions in or relating to existing surface or subsurface structures at or contiguous to the Site that has been utilized by Architect in preparing the Contract

Documents.

- (3) These reports and drawings are **not** Contract Documents and, except for any "technical" data regarding subsurface conditions specifically identified in Geotechnical Data and Existing Conditions, and underground facilities data, Contractor may not in any manner rely on the information in these reports and drawings. Subject to the foregoing, Contractor must make its own independent investigation of all conditions affecting the Work and must not rely on information provided by District.
- 14. Bidders may examine any available "as-built" drawings of previous work by giving District reasonable advance notice. District will not be responsible for accuracy of "as-built" drawings. The document entitled Existing Conditions applies to all supplied "as-built" drawings.
- 15. All questions about the meaning or intent of the Contract Documents are to be directed in writing to TETER electronically, email: sophia.nyberg@teterae.com. Interpretations or clarifications considered necessary by the District in response to such questions will be issued in writing by Addenda emailed, faxed, mailed, or delivered to all parties recorded by the District as having received the Contract Documents. Questions received less than **SEVEN (7)** Calendar days prior to the date for opening Bids may not be answered. Only questions answered by formal written Addenda will be binding. Oral and other interpretations or clarifications will be without legal effect.
- 16. Addenda may also be issued to modify other parts of the Contract Documents as deemed advisable by the District.
- 17. Each Bidder must acknowledge each Addendum in its Bid Form and Proposal by number or its Bid shall be considered non-responsive. Each Addendum shall be part of the Contract Documents. A complete listing of Addenda may be secured from the District.
- 18. Bids shall be based on products and systems specified in Contract Documents or listed by name in Addenda. Whenever in the Specifications any materials, process, or article is indicated or specified by grade, patent, or proprietary name, or by name of manufacturer, that Specification shall be deemed to be followed by the words "or equal." Bidder may, unless otherwise stated, offer any material, process, or article that shall be substantially equal or better in every respect to that so indicated or specified. The District is not responsible and/or liable in any way for a Contractor's damages and/or claims related, in any way, to that Contractor's basing its bid on any requested substitution that the District has not approved. Contractors and materials suppliers who submit requests for substitutions prior to the award of the Contract must do so in writing and in compliance with Public Contract Code section 3400. All requests must comply with the following:
 - a. District must receive any request for substitution a minimum of **TEN (10)** calendar days prior to bid opening.
 - b. Within 35 days after the date of the Notice of Award, the Successful Bidder shall submit data substantiating a request for substitution containing sufficient information to assess acceptability of product or system and impact on Project, including, without limitation, the requirements specified in the Spe-

- cial Conditions and the Specifications. Insufficient information shall be grounds for rejection of substitution.
- c. Approved substitutions, if any, shall be listed in Addenda. District reserves the right not to act upon submittals of substitutions until after bid opening.
- d. Substitutions may be requested after Contract has been awarded only if indicated in and in accordance with requirements specified in the Special Conditions and the Specifications.
- 19. All Bids must be sealed, and marked with name and address of the Bidder and the Project Number, Bid Name, Bid package, and time of bid opening. Bids will be received as indicated in the Notice to Contractors.
 - a. Mark envelopes with the name of the Project.
 - b. Bids must be submitted to the West Hills Community College District, Purchasing Department, by date and time shown in the Notice to Contractors.
 - c. Bids must contain all documents as required herein.
- 20. Bids will be opened at or after the time indicated for receipt of bids.
- 21. This Contract may include alternates. Alternates are defined as alternate products, materials, equipment, systems, methods, or major elements of the construction that may, at the District's option and under terms established in the Contract and pursuant to section 20103.8 of the Public Contract Code, be selected for the Work.
- 22. The District shall award the Contract, if it awards it at all, to the lowest responsive responsible bidder based on the criteria as indicated in the Notice to Contractors. In the event two or more responsible bidders submit identical bids, the District shall select the Bidder to whom to award the Contract by lot.
- 23. Time for Completion: District may issue a Notice to Proceed within THREE (3) months from the date of the Notice of Award. Once Contractor has received the Notice to Proceed, Contractor shall complete the Work within the period of time indicated in the Contract Documents.
 - a. In the event that the District desires to postpone issuing the Notice to Proceed beyond this 3-month period, it is expressly understood that with reasonable notice to the Contractor, the District may postpone issuing the Notice to Proceed.
 - b. It is further expressly understood by Contractor that Contractor shall not be entitled to any claim of additional compensation as a result of the postponement of the issuance of the Notice to Proceed beyond a 3-month period. If the Contractor believes that a postponement of issuance of the Notice to Proceed will cause a hardship to the Contractor, the Contractor may terminate the Contract. Contractor's termination due to a postponement beyond this 3-month period shall be by written notice to District within <u>TEN (10)</u> calendar days after receipt by Contractor of District's notice of postponement.

- c. It is further understood by the Contractor that in the event that Contractor terminates the Contract as a result of postponement by the District, the District shall only be obligated to pay Contractor for the Work that Contractor had performed at the time of notification of postponement and which the District had in writing authorized Contractor to perform prior to issuing a Notice to Proceed.
- d. Should the Contractor terminate the Contract as a result of a notice of postponement, District shall have the authority to award the Contract to the next lowest responsive responsible bidder.
- 24. The Bidder to whom Contract is awarded shall execute and submit the following documents by 5:00 p.m. of the **SEVENTH** (7th) calendar day following the date of the Notice of Award. Failure to properly and timely submit these documents entitles District to reject the bid as non-responsive.
 - a. Agreement: To be executed by successful Bidder. Submit four (4) copies, each bearing an original signature.
 - b. Escrow of Bid Documentation: This must include all required documentation. See the document Escrow of Bid Documentation for more information.
 - c. Performance Bond (100%): On the form provided in the Contract Documents and fully executed as indicated on the form.
 - d. Payment Bond (100%) (Contractor's Labor and Material Bond): On the form provided in the Contract Documents and fully executed as indicated on the form.
 - e. Insurance Certificates and Endorsements as required.
 - f. Workers' Compensation Certification.
 - g. Prevailing Wage and Related Labor Requirements Certification.
 - h. Disabled Veterans' Business Enterprise Participation Certification.
 - i. Drug-Free Workplace Certification.
 - i. Tobacco-Free Environment Certification.
 - k. Hazardous Materials Certification.
 - Lead-Based Paint Certification.
 - m. Imported Materials Certification.
 - n. Buy American Certification.
- 25. Any bid protest by any Bidder regarding any other bid must be submitted in writing to the District, before 5:00 p.m. of the **THIRD (3rd)** business day following bid open-

ing.

- a. Only a Bidder who has actually submitted a bid, and who could be awarded the Contract if the bid protest is upheld, is eligible to submit a bid protest. Subcontractors are not eligible to submit bid protests. A Bidder may not rely on the bid protest submitted by another Bidder.
- b. A bid protest must contain a complete statement of any and all bases for the protest and all supporting documentation. Materials submitted after the bid protest deadline will not be considered.
- c. The protest must refer to the specific portions of all documents that form the basis for the protest.
 - (1) Without limitation to other bases for protest, an inadvertent error in listing the California contractor license number on the Designated Subcontractors List shall not be grounds for filing a bid protest or grounds for considering the bid nonresponsive if the correct contractor's license number is submitted to the District within 24 hours after the bid opening and the corrected number corresponds with the submitted name and location for that subcontractor.
 - (2) Without limitation to other bases for protest, an inadvertent error listing an unregistered subcontractor shall not be grounds for filing a bid protest or grounds for considering the bid nonresponsive provided that any of the following apply:
 - (i) The subcontractor is registered prior to the bid opening.
 - (ii) The subcontractor is registered and has paid the penalty registration fee within 24 hours after the bid opening.
 - (iii) The subcontractor is replaced by another registered subcontractor pursuant to Public Contract Code section 4107.
- d. The protest must include the name, address and telephone number of the person representing the protesting party.
- e. The party filing the protest must concurrently transmit a copy of the protest and any attached documentation to all other parties with a direct financial interest that may be adversely affected by the outcome of the protest. Such parties shall include all other bidders or proposers who appear to have a reasonable prospect of receiving an award depending upon the outcome of the protest.
- f. The procedure and time limits set forth in this paragraph are mandatory and are each bidder's sole and exclusive remedy in the event of bid protest. Failure to comply with these procedures shall constitute a waiver of any right to further pursue the bid protest, including filing a Government Code Claim or legal proceed-

ings.

- 26. District reserves the right to reject any or all bids, including without limitation the right to reject any or all nonconforming, non-responsive, unbalanced, or conditional bids, to rebid, and to reject the bid of any bidder if District believes that it would not be in the best interest of the District to make an award to that bidder, whether because the bid is not responsive or the bidder is unqualified or of doubtful financial ability or fails to meet any other pertinent standard or criteria established by District. District also reserves the right to waive inconsequential deviations not involving price, time, or changes in the Work. For purposes of this paragraph, an "unbalanced bid" is one having nominal prices for some work items and/or enhanced prices for other work items.
- 27. Discrepancies between written words and figures, or words and numerals, will be resolved in favor of numerals or figures.
- 28. Prior to the award of Contract, District reserves the right to consider the responsibility of the Bidder. District may conduct investigations as District deems necessary to assist in the evaluation of any bid and to establish the responsibility, including, without limitation, qualifications and financial ability of Bidders, proposed subcontractors, suppliers, and other persons and organizations to perform and furnish the Work in accordance with the Contract Documents to District's satisfaction within the prescribed time.
- 29. The District shall award the Contract, if it awards it at all, to the lowest responsive responsible bidder based on: The base bid amount only.

END OF DOCUMENT

This Services Agreement ("Agreement") between West Hills Community College District, a public educational agency ("District") and ENTER CONTRACTOR ("Contractor") is effective upon the execution date of Contractor and District, whichever shall later occur. District and Contractor are referred to in this Agreement individually as "Party" and collectively as "Parties."

WHEREAS, it is necessary and desirable that Contractor be engaged by the District for the purpose to performing services hereinafter described; and

WHEREAS, Contractor warrants and represents to District that Contractor has the experience, expertise, and resources to successfully and effectively perform the agreed-upon services and will provide these services to the District in compliance with all applicable laws and regulations.

NOW, THEREFORE, in consideration of the mutual promises set forth below, the Parties agree as follows:

- 1. Scope of Service. Contractor shall perform the agreed-upon services as defined by the scope of work, deliverables, and standard of performance identified in Attachment(s), and in accordance with the terms and conditions in this Agreement. The services listed in this Agreement and in Attachment(s) are referred to as "Services." Contractor's Services will be timely and performed or provided consistent with the profession skill and care of Contractor's profession and in compliance with all applicable laws and regulations.
- Term. This Agreement will begin and will be completed by the dates specified in Attachment(s). Completion of the Services, including all deliverables as described in Attachment(s), must be made to the satisfaction of the District.
- **3. Fees and Reimbursements.** Contractor will receive compensation in an amount not to exceed the hourly or project rates shown in Attachment(s) for Services performed. District will pay Contractor all amounts owed within 30 days of receipt of Contractor's undisputed billing invoice. The District retains the right to increase or decrease the Services, deliverables, or amount of work as it deems appropriate and at its sole discretion.
- 4. Licenses and Permits. Contractor and all of the Contractor's employees or agents will secure and maintain in force all licenses and permits as are required by law, in connection with the performance of the Services or the furnishing of materials, articles or deliverables listed in this Agreement. All operations and materials shall be in accordance with the law.
- 5. Taxes. Contractor will fully complete the Internal Revenue Service W-9 form or other required reporting form. Contractor acknowledges and agrees that it is the Contractor's sole responsibility to make the requisite tax filings and payment to the appropriate federal, state or local tax authorities. The District will not withhold any part of the Contractor's compensation for the payment of social security, unemployment, or disability insurance or any other similar state or federal tax obligation. Contractor agrees to indemnify, defend, and hold the District harmless from any tax consequences.
- **Expenses and Equipment.** Contractor is solely and fully responsible for all costs and expenses incident to the performance of the Services by Contractor, including all instrumentalities, supplies, tools, equipment, or materials necessary to perform the Services. If the District furnishes any goods, materials, or equipment to Contractor, Contractor assumes complete liability for those goods, materials, or equipment.

Contractor agrees to pay for such tools or materials spoiled by it or not otherwise accounted for to the District's satisfaction.

- 7. Standard Commercial Use. Contractor, whether manufacturer, supplier, distributor, or retailer, hereby certifies that the types of products and equipment used by Contractor to perform the Services have been placed in regular commercial use for a period of at least three (3) years and that adequate spare parts exist in the marketplace for the items sold. Contractor will not deviate from this provision without the express written consent of the District.
- 8. Preventative Maintenance and Warranty. Contractor will perform all full preventative maintenance to keep the equipment in the most efficient mechanical and working condition possible. Contractor agrees to provide adequate training of District personnel to efficiently operate and maintain any products or equipment installed. Contractor warrants all equipment against manufacturing defects for a period not less than one (1) year from the District's date of acceptance, covering parts and labor, unless otherwise indicated. This warranty includes all costs of repair during the warranty period, including transportation costs. Contractor will pass along to the District all manufacturer warranties available.
- 9. Compliance with Applicable Laws. The Services must meet the approval of the District and are subject to the District's general right of inspection to ensure they are satisfactorily completed. Contractor agrees to comply with all federal, state and local laws, rules, regulations and ordinances that are now or may in the future become applicable to Contractor, the Services, Contractor's business, equipment, and personnel engaged in operations covered by this Agreement, or accruing out of the performance of such operations.
- Standard of Performance. The Contractor shall, in good and workmanlike manner and in accordance with the highest professional standards, at its own cost and expense, furnish all of the labor, technical, administrative, professional and all other personnel, all supplies and materials, equipment, printing, transportation, facilities and all other means whatsoever, except as herein otherwise expressly specified to be furnished by the District, necessary or proper to perform and complete the work and provide the Services required of the Contractor by this Agreement.
- 11. Independent Contractor. In the performance of this Agreement, Contractor shall act as an independent contractor. Contractor shall perform the Services and obligations under this Agreement according to the Contractor's own means and methods of work which shall be in the exclusive charge and under the control of Contractor, and which shall not be subject to control or supervision by the District except as to the results of the work. Contractor understands and agrees that he/she/it and all of his/her/its employees shall not be considered officers, employees or agents of the District, and are not entitled to benefits of any kind or nature normally provided employees of the District or to which District's employees are normally entitled, including, but not limited to, State Unemployment Compensation or Worker's Compensation. Contractor assumes the full responsibility for the acts or omissions of his/her/its employees or agents as they relate to the Services to be provided under this Agreement. Contractor is not authorized to make any representation, contract or commitment on behalf of the District.
- **12. Time of Performance.** Time is of the essence and Contractor shall perform the Services required by this Agreement in an expeditious and timely manner so as not to unreasonably delay the purpose of this Agreement.

- **13. Termination.** District may terminate this Agreement for its convenience at any time by written notification to Contractor three days prior to the effective date of termination. District will pay Contractor all earned and undisputed amounts for Services provided through the date of termination.
- District shall exclusively own, in perpetuity and worldwide, all rights to and flowing from the work, including any work product, performed under this Agreement. Contractor assigns to District any rights Contractor could have, may have, or does have, in the work or the work product performed under this Agreement, and District shall have all right, title, and interest in said matters, including the right to secure and maintain the copyright, trademark, or patent of said matters in the name of the District. Independent Contactor consents to the use of Contractor's name in conjunction with the sale, use, performance, and distribution of said matters, for any purpose and in any medium.
- 15. Limitation of Liability. The District's financial obligations under this Agreement are limited to the payment of the compensation provided in this Agreement and Attachment(s). Notwithstanding any other provision of this Agreement, in no event, shall the District be liable, regardless of whether any claim is based on contract or tort, for any special, consequential, indirect or incidental damages, including, but not limited to, lost profits or revenue, arising out of or in connection with this Agreement for the Services performed in connection with this Agreement.
- **16. Indemnity.** Contractor shall indemnify, defend, and hold the District, its Board of Trustees, officers, agents, employees, and volunteers harmless against any liability, claims, suits, demands, causes of action, damages, losses, injuries, and expenses, including reasonable attorneys' fees, whether actual or alleged, arising from all acts or omissions to act of Contractor or its officers, agents, employees, volunteers, and subcontractors, including any claim that Contractor infringed a third party patent or copyright or other intellectual property right, unless the liability or claims arise from the District's sole and active negligence or willful misconduct. The provisions of this section shall survive the termination or expiration of this Agreement.
- 17. Insurance Requirements. Contractor and its officers, employees, agents, and subcontractors shall, at their expense, maintain and comply with Insurance Requirements listed below to protect Contractor and District from any claims for personal injury, bodily injury and property damage arising from, pertaining to or relating to the scope of work under this Agreement:
 - a. <u>Commercial General Liability</u>. Minimum limits of \$1,000,000 per occurrence and \$2,000,000 general aggregate for personal injury, bodily injury, death, other injury, and property damage.
 - b. <u>Automobile Liability</u>. \$1,000,000 per accident for bodily injury and property damage applicable to all owned, non-owned, and hired vehicles.
 - c. <u>Workers' Compensation</u>. Statutory limits required by the State of California or state where Contractor's employees conduct business.
 - d. <u>Primary Insurance</u>. Any insurance or self-insurance maintained by the District shall be excess of the Contractor's insurance and shall not contribute with it.
 - e. <u>Waiver of Subrogation</u>. Contractor agrees that in the event of loss due to any perils for which it has agreed to provide Commercial General and Automobile Liability insurance, Contractor shall look solely to its insurance carrier(s) for recovery and grants a waiver of any right to subrogation which any such insurer of Contractor may acquire against the District by virtue of payments of any loss under this insurance.

- f. <u>Additional Insured</u>. Insurance shall name the District and its Board of Trustees, officers, employees, agents, and volunteers as Additional Insured under its Commercial General Liability and Automobile Liability policies.
- g. <u>Certificate of Insurance</u>. Insurance is to be placed with insurers with a current A.M. Best's rating of no less than A:VII unless otherwise acceptable to the District. Contractor shall furnish to the District original certificates of insurance and amendatory endorsements effecting coverage required by this Agreement and indicating a thirty (30) day cancellation notice or notice of reduction in coverage before performing any Services under this Agreement. Contractor will be in material default of the Agreement if it fails to timely furnish these documents to the District.
- 18. Protection of Confidential Information. Contractor understands and acknowledges that during its performance of the Services, it or its employees may have access to private and confidential information in the District's possession, custody or control, including but not limited to private information regarding students, parents, guardians, faculty, donors, employees, staff, alumni, or other personnel data or information and other District related trade secrets, business plans, and other proprietary information ("Confidential Information"). This information may be protected by state and federal law. Contractor will not disclose, copy, or modify any Confidential Information without the prior written consent of the District or unless otherwise required by law. Contractor will promptly notify the District if it becomes aware of any possible unauthorized disclosure or use of the Confidential Information. The provisions of this section shall survive the termination or expiration of this Agreement.
- **19. ADA/Accessibility.** With respect to ADA compliance, the Contractor shall:
 - a. Conform to section 508 of the Rehabilitation Act (http://www.section508.gov/section-508-standards-guide)and WCAG 2.1, Level AA (https://www.w3.org/TR/2020/WDWCAG22-20200811)specifications.
 - b. Comply with all applicable FCC regulations regarding advanced communications services (http://www.fee.gov/encyclopedia/advanced-communications-services-acs).
 - c. Resolve immediately any accessibility issues that are discovered or encountered by end users, and communicate a concrete timeframe for resolving the issue(s).
 - d. Prior to contract signing, must present a VPAT or other documentation demonstrating compliance.
 - e. Agree to indemnify and hold harmless the West Hills Community College District from and against any claim arising out of its failure to comply with these requirements.

Failure to comply with these requirements shall constitute a breach and be grounds for termination of this agreement.

- 20. Non-Discrimination Endorsement. Contractor and District mutually agree that they will comply with all applicable Federal and California state anti-discrimination laws and regulations and agree not to unlawfully discriminate against any prospective or active employee engaged in the work, or against any other person, on the basis of race, color, age, ancestry, national origin, sex, religious creed, marital status, or physical or mental disability, or sexual orientation or any other category protected by law, including but not limited to, the California Fair Employment Practice Act, beginning with Labor Code Section 1410, and Labor Code Section 1735. In addition, Contractor agrees to require like compliance by all hired subcontractors.
- **21. Drug-Free Workplace.** Contractor is aware of the provisions of California Government Code §§8350, et seq. and by entering into this agreement certifies that Contractor will adhere to, fulfill, satisfy and

discharge all provisions of and obligations under the Drug-Free Workplace Act of 1990. Contractor understands that if the District determines that Contractor has either: (i) made a false certification herein, or (ii) violated this certification by failing to carry out and to implement the requirements of California Government Code §§8355, the Contract awarded herein is subject to termination, suspension of payments, or both. Contractor further understands that, should Contractor violate the terms of the Drug-Free Workplace Act of 1990, Contractor may be subject to debarment in accordance with the provisions of California Government Code §§8350, et seq.

- **22. Fair Employment Practices/Equal Opportunity Acts.** District is an equal opportunity employer. By entering into this Agreement, Contractor certifies that he/she is in compliance with the Equal Employment Opportunity Requirement of Executive Order 11246, Title VII of the Civil Rights Act of 1973, the California Fair Employment and Housing Act and any other Federal or State law and regulations related to Equal Employment Opportunity. Contractor's personnel policies shall be made available to District upon request.
- **23. Provisions Required By Law Deemed Inserted.** Each provision of law and clause applicable to this Agreement, or required by law to be inserted in this Agreement, is deemed inserted herein and the Agreement shall be read and enforced as though the provisions are included herein.
- **24. Audit.** Contractor agrees that the District has the right to review, audit, and to copy any of Contractor's or Contractor's sub-consultants' records and supporting documentation pertaining to the performance of this Agreement. Contractor agrees to maintain such records for possible audit for a minimum of three (3) years after final payment, unless a longer period of records retention is required. Contractor agrees to allow the District access to these records during normal business hours and to allow interviews of any employees who might reasonably have information related to such records. Contractor agrees to include a similar right of the District to audit records and interview staff in any subcontract related to performance of this Agreement.
- 25. Registration for Public Works. If Contractor is performing a public work, as defined by California Labor Code section 1720, Contractor must adhere to the requirements of California Labor Code Section 1725.5 (DIR Contractor Registration) as a prerequisite to any work being performed under this Agreement. Contractor shall adhere to the requirements of California Labor Code Sections 1771 through 1776, and to California Education Code Section 81704, when the Services performed by Contractor require compliance with these Sections, including but not limited to, the reporting of certified payroll, payment of prevailing wages and the employment of apprentices. Contractor acknowledges that it shall register, if required, with the California Department of Industrial Relations (DIR) by utilizing DIR's online application registry link located at http://www.dir.ca.gov/Public-Works/PublicWorks.html.
- **26. Advertising.** Contractor shall not use the logo or name of the District, its officers, directors, employees, or agents, in advertising, social marketing campaigns, publicity releases or otherwise without securing the prior written consent of the District in each instance.
- **27. Non-waiver.** The failure of the District or Contractor to seek redress for violation of, or to insist upon, the strict performance of any term or condition of this Agreement, shall not be deemed a waiver by the party of such term or condition, or prevent a subsequent similar act from again constituting a violation of such term or condition.

28. Notice. All notices required or permitted to be given under this Agreement by either party to the other, shall be in writing and given, served, and received, if given in writing and either personally delivered or deposited in the Unites States mail, registered or certified mail, postage prepaid, return receipt requested, or sent by overnight delivery services, or facsimile transmission, addressed as follows:

For District:

West Hills Community College District Attention: Vice Chancellor of Business Services 275 W Phelps Avenue, Coalinga, CA 93210

For Contractor:

Contact information as referenced in Attachment 1

Any notice personally given or sent by facsimile transmission is effective upon receipt. Any notice sent by overnight delivery service is effective the business day next following delivery by overnight services. Any notice given by mail is effective three days after deposit in the United States mail.

29. Force Majeure. The Contractor and District are excused from performance during the time and to the extent that they are prevented from obtaining, delivering, or performing by act of God, pandemic, epidemic, Governmental Authority, state of emergency, fire, strike, loss, or shortage of transportation facilities, lock-out, commandeering of materials, products, plants or facilities by the government, when satisfactory evidence thereof is presented to the other party, provided that it is satisfactorily established that the non-performance is not due to the fault or neglect of the party not performing.

Should such an event take place which allows the Contractor and/or District to continue services under the agreement, Contractor will provide services following the recommendations, as well as description of mandatory safety and health standards, of the California Occupational Safety, Health Administration (Cal/OSHA), and District. Contractor shall also be responsible to monitor and follow Cal/OSHA, Center for Disease Control (CDC), Fresno and Kings Counties, and other applicable association guidelines and ordinances as it relates to the services provided. Contractor may also be required to provide additional documentation to the District such as a "Pandemic Plan."

- **30. Severability.** If any term, condition or provision of this Agreement is held by a court of competent jurisdiction to be invalid, void, or unenforceable, the remaining provisions will nevertheless continue in full force and effect and shall not be affected, impaired or invalidated in any way.
- **31. Approval by District's Board of Trustees.** Pursuant to Education Code Section 81655, this Agreement is not valid and does not constitute an enforceable obligation against the District unless and until District's Board of Trustees has approved or ratified this Agreement.
- **32. Conflict of Interest and Prohibited Interests.** No officer, employee, or any other agent of the District authorized in any capacity on behalf of the District to exercise any fiduciary, executive, or other similar functions, shall be allowed to possess or accept, directly or indirectly, or in any part thereof, any financial interest in any contract, bid or other procurement activity of the District. Additionally, no officer, employee, or any other agent of the District similarly authorized, shall be allowed to possess or accept any form of gift, payment, undue advantage or influence, directly or indirectly, or in any part thereof. The District reserves the right, before any Agreement or procurement award is made, to require an affidavit

from the respective bidder or Contractor to disclaim in writing any conflict of interest. Furthermore, the District reserves the right to reject any bidder or Contractor if any such conflict is discovered, and subsequently award to the next preferred vendor.

- **33. Governing Law**. This Agreement shall be governed and interpreted in accordance with the laws of the State of California in accordance with its fair meaning and not strictly for or against the District or Contractor. Any legal proceedings brought to interpret or enforce the terms of this Agreement, shall be brought in Fresno County, California.
- **34. Disputes.** Except in the event of the District's failure to make earned and undisputed payments to Contractor, if the District and Contractor have a dispute, each will continue to perform its respective obligations, including Contractor's duty to provide and perform the Services, during all attempts to resolve the dispute.
- 35. Mediation; Arbitration. Parties agree that if any dispute or controversy arises between them in any way arising out of, related to, or connected with this Agreement or its subject matter, they will participate in good faith in mediation and agree to equally share all mediator fees. If the Parties are unable to resolve the dispute or controversy through mediation, the Parties agree to submit the pending dispute or controversy to final and binding arbitration to be held in Fresno County, California, and to be governed by the Federal Arbitration Act ("FAA"). By agreeing to this binding arbitration provision, the Parties understand that they are waiving certain rights and protections which may otherwise be available if a claim were determined by litigation in court, including, without limitation, the right to seek or obtain certain types of damages precluded by this arbitration provision, the right to a jury trial, certain rights of appeal, the right bring a claim as a class member in any purported class or representative proceeding; and a right to invoke formal rules of procedure and evidence. The prevailing party shall be awarded all reasonable attorneys' fees, expert witness fees, and other litigation expenses, expended or incurred in such arbitration or litigation, unless the laws related to the claim that the party prevailed on preclude a court from awarding attorneys' fees and costs to the prevailing party. The provisions of this section will apply during the term of this Agreement and survives after the termination or expiration of this Agreement.
- **Successors; No Assignment.** This Agreement and all terms hereof are binding upon and inure to the benefit of the respective successors of Contractor and the District. Neither Contractor nor District may assign rights or obligations of this Agreement without the prior written consent of the other, which may be withheld or granted in sole discretion of the Party requested to grant consent.
- **37. Counterparts.** This Agreement may be executed in several counterparts, each of which shall be deemed an original, but all of which together shall constitute one and the same agreement.
- **38. Entire Agreement.** This Agreement and Attachment(s) constitute the sole entire Agreement and understanding between the District and Contractor concerning their subject matter. It replaces and supersedes all prior agreements or negotiations, whether written or verbal. It may not be modified except in a writing signed by the District and Contractor.
- **39. Authority.** Each of the Parties and signatories to this Agreement represents and warrants that he or she has the full right, power, legal capacity and authority to sign, enter into and perform the Parties' respective obligations hereunder and that such obligations shall be binding upon such Party.

IN WITNESS WHEREOF, the District and Contractor have executed this Agreement as of the dates set forth below.

Board Date: Click or tap to enter a date.

CONTRACTOR:	WEST HILLS COMMUNITY COLLEGE DISTRICT:		
Signature	Signature		
Print Name: Click or tap here to enter text.	Print Name: Shanna Ahrens		
Title:_Click or tap here to enter text. Date: Click or tap to enter a date.	Title: Vice Chancellor Business Services Date: Click or tap to enter a date.		

ATTACHMENT 1- SCOPE OF WORK

Contractor/Consultant:

CONTRACTOR NAME
ADDRESS
Contact name, number and email address

District Point of Contact:

Click or tap here to enter text. Click or tap here to enter text.

Contract Period:

Click or tap here to enter text.

Services to be Performed	Pricing

Responsibilities of the Contractor/Consultant, Scope of Work and Contract Objective:

Scope of work

Responsibilities of the District:

District responsibilities

Contract Schedule of Deliverables, Performance Milestones and Proof of Completion:

Deliverables

Rate of Payment:

Click or tap here to enter text. Per: Choose an item.

Total Cost of Services Not to Exceed: Click or tap here to enter text.

Funding Source:

Payment:

Contractor/Consultant requests for payment via invoice to be sent: Choose an item.

Services shall be billed to "West Hills Community College District" and become payable after satisfactory completion of services and upon presentation of detailed invoice(s) specifying services being provided. All invoices must be reviewed and approved by the assigned District Point of Contact(s) prior to payment being made to Contractor. Contractor will submit invoices with original receipts to:

West Hills College District ATTN: Accounts Payable 275 W Phelps Avenue Coalinga, CA 93210

SECTION 011100 SUMMARY OF WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

- 1. Project information.
- 2. Work covered by Contract Documents.
- 3. Access to site.
- 4. Coordination with occupants.
- 5. Work restrictions.
- 6. Specification and drawing conventions.

B. Related Sections:

1. Division 01 Section "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner's facilities.

1.3 PROJECT INFORMATION

A. Project Identification:

West Hills College Coalinga Chiller Replacement West Hills Community College District 300 W. Cherry Ln. Coalinga, CA 93210

Architect's Project Number: 22-12358

B. Owner:

West Hills Community College District 275 Phelps Ave Coalinga, CA 93210

Telephone: 559.934.2254 Contact: Shaun Bailey

C. Architect:

TETER, LLP 7535 North Palm Avenue, Suite 201 Fresno, California 93711

Telephone 559.437.0887 Contact: Aya Shitanishi

1.4 WORK COVERED BY CONTRACT DOCUMENTS

- A. The Work of the Project is defined by the Contract Documents and consists of the following:
 - 1. Removal of existing cooling towers and chillers located in the mechanical room of building B.
 - 2. Install new mechanical yard located North of building C. New air cooled chiller to be installed in new yard with hydronic piping routed below grade to the building B mechanical room.

1.5 CONTRACTOR'S USE OF SITE AND PREMISES

- A. General: Contractor shall have full use of Project site for construction operations during construction period. Contractor's use of Project site is limited only by Owner's right to perform work or to retain other contractors on portions of Project.
- B. Use of Site: Limit use of Project site to work in areas indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 - 1. Driveways, Walkways and Entrances: Keep driveways, loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 - a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 - b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

1.6 COORDINATION WITH OCCUPANTS

- A. Full Owner Occupancy: Owner will occupy site and adjacent building(s) during entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's day-to-day operations. Maintain existing exits unless otherwise indicated.
 - 1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or

- used facilities without written permission from Owner and approval of authorities having jurisdiction.
- 2. Notify the Owner not less than 72 hours in advance of activities that will affect Owner's operations.

1.7 WORK RESTRICTIONS

- A. Work Restrictions, General: Comply with restrictions on construction operations.
 - 1. Comply with limitations on use of public streets and other requirements of authorities having jurisdiction.
- B. On-Site Work Hours: Limit work to normal business working hours of 7:00 a.m. to 6:00 p.m., Monday through Friday, except as otherwise indicated.
 - 1. Submit a written request to the Architect for work hours outside of the indicted on-site hours; request subject to review by the Owner.
- C. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
 - 1. Notify Architect, Construction Manager, and Owner not less than 2 days in advance of proposed utility interruptions.
 - 2. Obtain Architect's, Construction Manager's, and Owner's written permission before proceeding with utility interruptions.
- D. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.
 - 1. Notify Architect, Construction Manager, and Owner not less than 2 days in advance of proposed disruptive operations.
 - 2. Obtain Architect's, Construction Manager's, and Owner's written permission before proceeding with disruptive operations.
- E. Controlled Substances: Use of tobacco products and other controlled substances on Project site is not permitted.

1.8 SPECIFICATION AND DRAWING CONVENTIONS

- A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 - 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 - 2. Specification requirements are to be performed with by Contractor unless specifically stated otherwise.

- B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.
- C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:
 - 1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
 - 2. Abbreviations: Materials and products are identified by abbreviations scheduled on Drawings.
 - 3. Keynoting: Materials and products are identified by reference keynotes.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

22-12358 SUMMARY OF WORK 011100 - 4 of 4

SECTION 011103 ADDENDA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative requirements for Addenda issued prior to bid opening.
- B. Related Requirements:
 - 1. Division 00 Sections as applicable to contract requirements and modifications.
 - 2. Division 01 Section "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.
 - 3. Division 01 Section "Contract Modification Procedures" for changes to the Contract Documents after award of the Contract.

1.3 NOTICE TO BIDDERS

- A. Addenda will be issued to registered plan holders for changes to the drawings and specifications during the bidding period prior to the bid opening. Addenda shall serve to clarify, revise, and supersede information in the Project Manual, Drawings, and previously issued Addenda. Portions of the Addenda affecting the Contract Documents will be incorporated into the Contract by enumeration of the Addendum in the Owner/Contractor Agreement.
- B. The Bidder shall acknowledge receipt of this Addendum in the appropriate space on the Bid Form.

1.4 GOVERNING AGENCY REVIEW AND APPROVAL

A. Addenda shall be submitted to the Authority having Jurisdiction (AHJ) by the project Architect and shall be approved by the AHJ in order to be officially incorporated into the construction documents.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

SECTION 011105 USE OF ARCHITECT'S ELECTRONIC FILES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes Administrative and procedural requirements for use of Architect's electronic Contract Document drawing files.

B. Related Sections:

- 1. Division 01 Section "Project Management and Coordination."
- 2. Division 01 Section "Submittal Procedures."
- 3. Division 01 Section "Project Record Drawings."

1.3 USE OF ARCHITECT'S ELECTRONIC FILES

- A. Architect may make available to Contractor digital data files of Architect's Drawings for use in preparing shop drawings, coordination drawings, and project record drawings.
 - 1. Electronic files will be available without charge.
 - 2. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to Drawings.
 - 3. Files will be supplied digitally via email or FTP site and will be in PDF, DWG, or similar common format.
 - 4. Waiver of Liability: Contractor, Subcontractors, and Suppliers of this Project shall each execute a waiver of liability for each use of the Architects electronic files.
 - a. Waiver of Liability form shall be submitted to the Architect at the time or request for use of Architect's electronic data files.
 - b. Waiver of Liability form shall be the "ELECTRONIC DATA FILE DISTRIBUTION WAIVER OF LIABILITY FORM" included at the end of this Specification Section.
 - c. The use of the electronic files shall only be used for this Project and for the identified purposes noted in the Waiver of Liability form.
 - 1) Each entity shall be responsible for complying with the restrictions of the Liability Waiver form.
 - 2) Electronic Contract Document drawing files received from the architect shall not be duplicated without written permission of the Architect.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

(Electronic Data File Distribution Waiver of Liability included on the following page)

ELECTRONIC DATA FILE DISTRIBUTION WAIVER OF LIABILITY

TETER, LLP 7535 North Palm. Suite 201

Fresno, California 93711	
Project: WHC Coalinga Chiller Replacement	
Intended Use:	· · · · · · · · · · · · · · · · · · ·
Any electronic data, files or information provided under this Agreement are the listed Professionals and consultants (Team). It is understood and agreed that the in these electronic data file shall not be copied or duplicated for any use other they were created. It is understood by the undersigned that compatibility of the other systems is not guaranteed, and conversion to other systems is done at the conversion to other systems.	ne information contained nan the project for whicl is electronic media witl
The user hereby agrees and recognizes that designs, plans and data store including, but not limited to, computer disk and magnetic tape, may be subject to and/or uncontrollable deterioration. It is agreed by the undersigned that the Teathe completeness or accuracy of any material provided on electronic media.	undetectable alteration
The undersigned agrees to defend, hold harmless and indemnify the Team aremployees, agents and consultants for any and all claims, losses, costs or damout of, resulting from, or in any way related to the use of electronic data files provious use is authorized or unauthorized. The user further agrees to defend, inder the Team its officers, directors, employees, agents and consultants from any a losses, expenses and injuries arising out of the modification of the electronic data anyone obtaining said files through or from the user.	nage whatsoever arising ded hereunder, whethe nnify and hold harmles nd all claims, damages
The Team bears no responsibility for the information in the electronic data files of TETER , LLP. The undersigned understands that the electronic data files a copyright laws of the United States and agrees to be bound by same. Upon our rouly executed by an Officer of your firm you may request the Data files.	re subject to applicable
Name (Print/Sign):	Date:
Firm:	
Phone and email:	
Name (Print/Sign):Firm:	Date:
Phone and email:	
Name (Print/Sign):	Date:
Firm:	

Phone and email:

SECTION 012500 SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

B. Related Sections:

- 1. Division 00 Section "Instructions to Bidders" and other Division 00 Sections as applicable to substitution requests prior to submission of bids.
- 2. Division 01 Section "DSA Hourly Fee Services" for DSA hourly fee services for review of changes to DSA approved Construction Documents.
- 3. Division 01 Section "Contract Modification Procedures" for changes to DSA approved Construction Documents."
- 4. Division 01 Section "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.
- 5. Divisions 02 through 33 Sections for specific requirements and limitations for substitutions

1.3 DEFINITIONS

- A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents.
 - 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 - 2. Substitutions for Convenience: Changes proposed by Contractor that are not required in order to meet other Project requirements but may offer advantage to the Owner.

1.4 REGULATORY REQUIREMENTS

A. Division of the State Architect (DSA) Review and Approval: Substitutions resulting in changes to DSA approved Construction Documents may be considered a change requiring DSA review and approval and submission of a DSA Construction Change Document (CCD) form by the Architect.

- 1. DSA Construction Change Documents shall be as specified in Division 01 Section "Contract Modification Procedures."
- 2. DSA Hourly Fee Services for review of CCD's shall be as specified in Division 01 Section "DSA Hourly Fee Services."

1.5 SUBMITTALS

- A. Substitution Requests: Submit documentation identifying product or fabrication or installation method to be replaced. Include Specification Section number and title, and Drawing numbers and titles.
 - 1. Substitution Request Form: Use form provided at the end of this Section.
 - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 - c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable specification section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 - d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
 - e. Samples, where applicable or requested.
 - f. Certificates and qualification data, where applicable or requested.
 - g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
 - h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
 - i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
 - j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
 - k. Cost information, including a proposal of change, if any, in the Contract Sum.
 - I. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
 - m. Contractor's waiver of rights to additional payment or time that may

subsequently become necessary because of failure of proposed substitution to produce indicated results.

- 3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within 7 days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or 7 days of receipt of additional information or documentation, whichever is later. Architect will not act on any Post-Bid Substitutions until 7 days following the submission of the Schedule of Values per Division 01 Section "Payment Procedures."
 - a. Forms of Acceptance:
 - 1) Substitutions Prior to Bid: Addenda will be issued for substitutions accepted prior to bid.
 - 2) Substitutions After Award of Contract: Change Order, Construction Change Directive, or Architect's Supplemental Instructions for minor changes in the Work.
 - b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.6 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage qualified testing agency to perform compatibility tests recommended by manufacturers.

1.7 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

- A. Substitutions Prior to Bid: Architect will consider requests for substitution if received within 21 days prior to the submission of bids. Requests received after that time may be considered or rejected at discretion of Architect.
 - 1. Conditions: Architect will consider bidder's request for substitution when the following conditions are satisfied.
 - a. Substitutions prior to bid shall also be subject to the requirements of applicable Division 00 Specification Sections.
 - b. Substitutions prior to bid shall comply with the requirements for Substitutions for Cause or Substitutions for Convenience as applicable.

- 2. Substitutions requested by bidders during the bidding period, and accepted by Addendum prior to award of the Contract, are considered as included in the Contract Documents.
- B. Substitutions After Award of Contract: The Contractor after award of the Contract, as allowed by the General Conditions, may submit materials and methods to be considered for substitutions.
 - 1. The following are not considered to be substitutions:
 - a. Revisions to the Contract Documents requested by the Owner or Architect.
 - b. Specified options of products and construction methods included in the Contract Documents.
 - c. The Contractor's compliance with governing regulations and orders issued by governing authorities.
- C. Substitutions for Cause: Submit requests for substitution immediately upon discovery of need for change, but not later than 21 days prior to time required for preparation and review of related submittals.
 - Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - b. Substitution request is fully documented and properly submitted.
 - c. Requested substitution will not adversely affect Contractor's construction schedule.
 - d. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - e. Requested substitution is compatible with other portions of the Work.
 - f. Requested substitution has been coordinated with other portions of the Work.
 - g. Requested substitution provides specified warranty.
 - h. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.
- D. Substitutions for Convenience: Architect will consider requests for substitution if received within 60 days after the Notice to Proceed. Requests received after that time may be considered or rejected at discretion of Architect.
 - 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:

- a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
- b. Requested substitution does not require extensive revisions to the Contract Documents.
- c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
- d. Substitution request is fully documented and properly submitted.
- e. Requested substitution will not adversely affect Contractor's construction schedule.
- f. Requested substitution has received necessary approvals of authorities having jurisdiction.
- g. Requested substitution is compatible with other portions of the Work.
- h. Requested substitution has been coordinated with other portions of the Work.
- i. Requested substitution provides specified warranty.
- j. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

END OF SECTION

(Substitution Request Form included on the following page)

SUBSTITUTION REQUEST FORM

FOR: WHC Coalinga Chiller Replacement

We hereby submit for your consideration the following product instead of the specified item for the above project: **SECTION** PARAGRAPH SPECIFIED ITEM Proposed Substitution: ____ Attach complete technical data, including laboratory tests, if applicable. Include complete information on changes to Drawings and/or Specifications which proposed substitution will require for its proposed installation. Fill in the blanks below: Does the substitution affect dimension on Drawings: B. Will the undersigned pay for changes to the building design, including engineering and detailing costs caused by the requested substitution? C. What affect does substitution have on other trades? D. Difference between proposed substitution and specified item? E. Manufacturer's guarantees of the proposed and specified items are: ____ Same _____ Different (explain on attachment) F. Cost difference between proposed substitution and specified item - savings to Owner? The undersigned states that the function, appearance and quality are equivalent or superior to the specified item and will be at no additional cost to the Owner. Submitted to the Architect by: For Use by Design Consultant Signature: ___ Accepted Firm: Accepted as Noted Address: Not Accepted Received Too Late Date: Telephone: Date:

Remarks:

SECTION 012600 CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- B. Division of the State Architect (DSA) Interpretation of Regulations IR A-6 "Construction Change Document Submittal and Approval Process," latest edition (This document is available on DSA's website).

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for handling and processing Contract modifications including the following:
 - 1. Governing Agency requirements.
 - 2. Architect's Supplemental Instructions.
 - 3. Architect's Change Directive.
 - 4. Proposal Requests.
 - 5. Change Orders.

B. Related Requirements:

- 1. Division 00 Sections as applicable to contract requirements and modifications.
- 2. Division 01 Section "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.
- 3. Division 01 Section "DSA Hourly Fee Services" for fees charged by DSA for changes to the Construction Documents.

1.3 DEFINITIONS

- A. Contract Modification: A change to the Contract Agreement between the Owner and the Contractor affecting the Contract Documents, the Contract Time, and/or the Contract Amount.
- B. Change Order (CO): A document defining Contract Modifications. Change Orders shall be issued by the Architect and shall be signed by the Architect, Owner, and Contractor.
- C. Construction Change Document (CCD): A form required by DSA for documentation of changes to the DSA approved Construction Documents.
- D. Architect's Change Directive (ACD): A form utilized by the Architect directing the

Contractor to proceed with a change that may or may not require DSA approval.

E. Architect's Supplemental Instruction (ASI): For minor changes in the Work not involving adjustment to the Contract Sum or the Contract Time, the Architect will issue Architect's Supplemental Instructions authorizing such changes.

1.4 CHANGES TO DSA APPROVED CONSTRUCTION DOCUMENTS

- A. Division of the State Architect: For projects under the jurisdiction of the Division of the State Architect (DSA), Changes to the Construction Documents shall be reviewed and approved by DSA. Changes to the Construction Documents shall be submitted to DSA by the Architect, submittals for changes shall include DSA Form 140 "Application for Submittal of Post-Approval Document."
- B. DSA Hourly Fee Services: Changes to DSA approved Construction Documents shall be reviewed by DSA and shall be subject to DSA Hourly Fee Services. Charges will be made to the Owner by DSA.
 - 1. Where changes to DSA approved Construction Documents are the result of actions by the Contractor, the Contractor shall be liable for DSA Hourly Fee Services as described in Division 01 Section "DSA Hourly Fee Services."

1.5 ARCHITECT'S SUPPLEMENTAL INSTRUCTION

- A. Architect's Supplemental Instruction (ASI): For minor changes in the Work not involving adjustment to the Contract Sum or the Contract Time, the Architect will issue Architect's Supplemental Instructions authorizing such changes.
 - 1. Architect's Supplemental Instructions affecting changes to the Construction Documents shall be subject to governing agency review and approval, and shall be accompanied by appropriate DSA CCD documentation.
 - 2. Contractor's Response:
 - a. Contractor shall perform the work indicated in the Architect's Supplemental Instruction without adjustment to the Contract Sum or the Contract Time.
 - b. If the Contractor determines that an adjustment to the Contract Sum or the Contract Time is necessary due to the Architect's Supplemental Instruction, the Contractor shall respond to the Architect's Supplemental Instruction as if it were an Architect/Owner initiated Proposal Request.

1.6 ARCHITECT'S CHANGE DIRECTIVE

- A. Architect's Change Directive (ACD): Architect may issue an Architect's Change Directive on Architect's standard form to instruct Contractor to proceed with a change in the Work for subsequent inclusion in a Change Order.
 - 1. Architect's Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the

- Contract Sum or the Contract Time.
- 2. Architect's Change Directives affecting structural, fire/life safety, and/or access compliance shall be accompanied by appropriate approved DSA CCD documentation.
- 3. Architect's Change Directive shall be issued by the Architect and shall be signed by the Architect.
- B. Documentation by Contractor: Maintain detailed records on a time and material basis of work required by the Architect's Change Directive.
 - 1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

1.7 PROPOSAL REQUESTS

- A. General: Proposal Requests allow the Contractor to respond to proposed changes in the Work that involve an adjustment to the Contract Sum or the Contract Time. Proposal Requests are not instructions to stop work in progress or execute proposed changes. Upon Owner's approval of a Proposal Request, Architect will issue a Change Order instructing the Contractor to proceed with the proposed changes (Refer to Part 1 Article "Change Order Procedures").
- B. Architect/Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 - Contractor's Response: Within time specified in Proposal Request, or not more than 7 days after receipt of Proposal Request when not otherwise specified, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 - a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 - c. Include costs of labor and supervision directly attributable to the change.
 - d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 - e. Quotation Form: Use forms acceptable to Architect.
- C. Contractor-Initiated Proposals: If conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect. Architect will not act on any Contractor Initiated Proposals until 7 days following the submission of the Schedule of Values per Division 01 Section "Payment Procedures."
 - 1. Include a statement outlining reasons for the change and the effect of the change

- on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
- 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
- 3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
- 4. Include costs of labor and supervision directly attributable to the change.
- 5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
- 6. Comply with requirements in Division 01 Section "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.
- 7. Proposal Request Form: Use form acceptable to Architect.
- D. Architect's Response: Within 7 days after receipt of Contractor's response to Architect/Owner initiated Proposal Request or Contractor's Proposal, Architect will:
 - 1. Issue a Change Order for accepted proposals.
 - 2. Notify the Contractor of unaccepted proposals.
 - 3. Issue an Architect's Change Directive where changes are necessary for the progress of the Work and changes to the Contract Sum and the Contract Time are in dispute.

1.8 CHANGE ORDER PROCEDURES

- A. On Owner's approval of a Proposal Request, Architect will issue a Change Order for signatures of Owner and Contractor on form provided by Architect.
 - 1. Change Orders affecting changes to the Construction Documents shall be subject to governing agency review and approval, and shall be accompanied by appropriate DSA CCD documentation.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 012605 DSA HOURLY FEE SERVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- B. Division of the State Architect (DSA) Interpretive Regulation IR A-30 "DSA Hourly Fee Services" latest edition (Document is available on DSA's website under "Publications;" Interpretive Regulations (IRs); A- Administrative; IR-30).

https://www.dgs.ca.gov/dsa/

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for DSA Hourly Fee Services associated with changes to DSA approved Construction Documents.
- B. Related Requirements:
 - 1. Division 00 Sections as applicable to contract requirements and modifications.
 - 2. Division 01 Section "Addenda."
 - 3. Division 01 Section "Substitution Procedures."
 - 4. Division 01 Section "Contract Modification Procedures."
 - 5. Division 01 Section "Payment Procedures."
 - 6. Division 01 Section "Submittal Procedures."
 - 7. Division 01 Section "Product Requirements."

1.3 DSA HOURLY FEE SERVICES

- A. General: Changes to DSA approved Construction Documents shall be documented by the use of DSA Construction Change Document (CCD) forms. CCD forms shall be submitted to DSA by the Architect.
 - 1. Refer to Division 01 Section "Contract Modification Procedures" for additional information regarding DSA CCD's.
- B. DSA Hourly Fee Services: Changes to DSA approved Construction Documents shall be reviewed by DSA and shall be subject to DSA Hourly Fee Services for review at a rate established by DSA IR A-30. Charges will be made to the Owner by DSA.
 - 1. Hourly Rate: Rate per hour as established by DSA IR A-30, latest edition.
- C. Bidder's Responsibility: Prior to bidding, where a bidder's request for substitution or

similar action results in a change requiring DSA Hourly Fee Services, bidder shall submit a deposit to the Architect for reimbursement for DSA Hourly Fee Services. The deposit amount shall be established by the Architect, a minimum of one hour of DSA Hourly Fee Services (hourly rate as established by DSA IR A-30) will not be refundable. Deposits shall be made payable to the Owner.

D. Contractor's Responsibility: When a contractor's action results in a change requiring DSA Hourly Fee Services, charges by DSA to the Owner will be deducted from the Contract Sum and the Architect will issue a Change Order on a quarterly basis to adjust the Contract Sum.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 012613 REQUEST FOR INFORMATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative provisions for preparation, submittal and response to Contractor's Request for Information (RFI's) during construction of project.

B. Related Sections:

1. General Conditions of the Contract.

1.3 DEFINITIONS

A. RFI, Request for Information: Request from Contractor seeking information required by or clarification of the Contract Documents.

1.4 SUBMITTALS

A. RFI Submittals: Submit RFI's via email as PDF electronic files; include attachments in PDF electronic file format.

1.5 REQUESTS FOR INFORMATION (RFIs)

- A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.
 - 1. Architect will return without response those RFIs submitted to Architect by other entities controlled by Contractor.
 - 2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.
- B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:
 - 1. Project name.
 - 2. Project number.
 - 3. Date.

- 4. Name of Contractor.
- 5. Name of Architect
- 6. RFI number, numbered sequentially.
- 7. RFI subject.
- 8. Specification Section number and title and related paragraphs, as appropriate.
- 9. Drawing number and detail references, as appropriate.
- 10. Field dimensions and conditions, as appropriate.
- 11. Contractor's suggested resolution. If Contractor's solution(s) impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
- 12. Contractor's signature.
- 13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 - a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.
- C. RFI Form: Use RFI form included at end of this Section or form acceptable to Architect. Upon request from the Contractor, the form at the end of this section will be made available in WORD format from the Architect.
- D. Architect's Action: Architect will review each RFI, determine action required, and respond.
 - 1. Allow 10 working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.
 - 2. Architect will not act on any RFI's until 7 days following the submission of the Schedule of Values per Division 01 Section "Payment Procedures."
 - 3. The following RFIs will be returned without action:
 - a. Requests for approval of submittals.
 - b. Requests for approval of substitutions.
 - c. Requests for approval of Contractor's means and methods.
 - d. Requests for coordination information already indicated in the Contract Documents.
 - e. Reguests for adjustments in the Contract Time or the Contract Sum.
 - f. Requests for interpretation of Architect's actions on submittals.
 - g. Incomplete RFIs or inaccurately prepared RFIs.
 - 4. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.
 - 5. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Division 01 Section "Contract Modification Procedures."
 - a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.
 - 6. Distribution: The Architect shall distribute one electronic copy of each completed RFI review to the Contractor and the Owner.

- E. Regulatory Requirements: Architect's responses that modify the Contract Documents affecting Structural Safety, Fire and Life Safety, and/or Access Compliance shall be submitted to the Division of the State Architect for review and approval.
 - Changes to DSA approved Construction Documents shall be as specified in Division 01 Section "Contract Modification Procedures."
- F. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the sequential RFI number. Submit log weekly unless otherwise directed in writing by Architect. Include the following:
 - 1. Project name.
 - 2. Name and address of Contractor.
 - Name and address of Architect.
 - 4. RFI number including RFIs that were returned without action or withdrawn.
 - 5. RFI description.
 - 6. Date the RFI was submitted.
 - 7. Date Architect's response was received.
- G. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within 7 days if Contractor disagrees with response.
- H. Contractor's Expense for RFI's: Architect will review and respond to legitimate RFI's at no additional cost to the Contractor. RFI's determined by the Architect to be flagrant or unnecessary will have the expense for the Architect's time paid by the Owner with the amount being deducted from the Contract Sum. The expense will be based on an hourly rate in accordance with the Architect's standard hourly rate schedule in effect at the time the work is performed with a minimum of one hour for each flagrant or unnecessary RFI.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

(REQUEST FOR INFORMATION form included on the following page)

REQUEST FOR INFORMATION

Project: WHC Coalinga Chiller Replacement West Hills Community College District TETER Project No. 22-12358	Client Project No.	Date:			
	DSA File No. DSA Appl No.	Request for Information No Deviation from Contract Docs Correction of Non-Compliant Work			
From:					
To: Name Title or Department TETER 123 Street Address City, State, Zip	Drawing: Detail No Specification: Addendum:				
Subject:					
Information Requested: Contractor's Recommendation:					
Probable Cost Effect: Architect's Response:	Probable Time Effec	ot:			

Disclaimer

The work shall be carried out in accordance with the above supplemental instructions pursuant the Contract Documents, without change in the Contract Sum or Contract Time. Proceeding with the Work, according to these instructions, indicates your acknowledgement that there will be no change in the Contract Sum or Contract Time. If the Contractor considers that this response requires a change in the Contract Sum or Contract Time, the Contractor shall not proceed with this Work and shall promptly submit an item proposal.

SECTION 012900 PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section specifies administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Sections:

- 1. Division 01 Section "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.
- 2. Division 01 Section "Construction Progress Documentation" for administrative requirements governing the preparation and submittal of the Contractor's construction schedule.
- 3. Division 01 Section "Submittal Procedures" for administrative requirements governing the preparation and submittal of the submittal schedule.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

- A. Coordination: Coordinate preparation of the Schedule of Values with preparation of Contractor's construction schedule.
 - 1. Coordinate line items in the schedule of values with other required administrative forms and schedules, including the following:
 - a. Application for Payment forms with continuation sheets.
 - b. Submittal schedule.
 - c. Items required to be indicated as separate activities in Contractor's construction schedule.
 - 2. Submit the Schedule of Values to Architect at earliest possible date but no later than 7 days before the date scheduled for submittal of initial Applications for

Payment.

- Architect will not act on any RFI's, Post-Bid Substitutions, and/or changes to the project scope, cost, or schedule until 7 days following the submission of the Schedule of Values.
- B. Format and Content: Use the Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.
 - 1. Identification: Include the following Project identification on the schedule of values:
 - a. Project name and location.
 - b. Name of Architect.
 - c. Architect's project number.
 - d. Contractor's name and address.
 - e. Date of submittal.
 - 2. Arrange the schedule of values in tabular form with separate columns to indicate the following for each item listed:
 - a. Related Specification Section or Division.
 - b. Description of the Work.
 - c. Name of subcontractor.
 - d. Name of manufacturer or fabricator.
 - e. Name of supplier.
 - f. Change Orders (numbers) that affect value.
 - g. Dollar value of the following, as a percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.
 - 1) Labor.
 - 2) Materials.
 - 3) Equipment.
 - 3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Provide multiple line items for principal subcontract amounts in excess of 5 percent of Contract Sum.
 - a. Include separate line items under Contractor and principal subcontracts for project closeout requirements in an amount totaling 5 percent of the Contract Sum and subcontract amount.
 - 4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.
 - 5. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 - a. Differentiate between items stored on-site and items stored off-site. If required, include evidence of insurance.

- 6. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.
- 7. Each item in the schedule of values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 - a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the schedule of values or distributed as general overhead expense, at Contractor's option.
- 8. Schedule Updating: Update and resubmit the schedule of values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.5 APPLICATIONS FOR PAYMENT

- A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
 - 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.
- B. Payment Application Times: The date for each progress payment application shall be as indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.
 - 1. If dates and periods are not indicated in the Agreement between Owner and Contractor at time of bidding, the date for Application for Payment shall be established by the Owner to correspond with the Owner's administrative procedures in order to allow for processing and approval of Application for Payment. The period of construction work covered by each Application for Payment shall be one month.
 - 2. Submit draft copy of Application for Payment 7 days prior to due date for review by Architect.
- C. Application for Payment Forms: Use forms acceptable to Architect and Owner for Applications for Payment. Submit forms for approval with initial submittal of schedule of values.
- D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 - 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.

- 2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.
- 3. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.
- 4. Indicate separate amounts for work being carried out under Owner-requested project acceleration.
- E. Stored Materials: Include in Application for Payment amounts applied for materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site and items stored off-site.
 - 1. Provide certificate of insurance, evidence of transfer of title to Owner, and consent of surety to payment, for stored materials.
 - 2. Provide supporting documentation that verifies amount requested, such as paid invoices. Match amount requested with amounts indicated on documentation; do not include overhead and profit on stored materials.
 - 3. Provide summary documentation for stored materials indicating the following:
 - a. Materials previously stored and included in previous Applications for Payment.
 - b. Work completed for this Application utilizing previously stored materials.
 - c. Additional materials stored with this Application.
 - d. Total materials remaining stored, including materials with this Application.
- F. Transmittal: Submit 6 signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt within 24 hours. One copy shall include waivers of lien and similar attachments if required.
 - 1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.
- G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's liens from subcontractors, sub-subcontractors, and suppliers for construction period covered by the previous application.
 - 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
 - 2. When an application shows completion of an item, submit conditional final or full waivers.
 - 3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
 - 4. Submit final Application for Payment with or preceded by conditional final waivers from every entity involved with performance of the Work covered by the application who is lawfully entitled to a lien.
 - 5. Waiver Forms: Submit waivers of lien on forms, executed in a manner acceptable to Owner.
- H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

- List of subcontractors.
- 2. Schedule of values.
- 3. Contractor's construction schedule (preliminary if not final).
- 4. Submittal schedule (preliminary if not final).
- 5. List of Contractor's staff assignments.
- 6. Copies of authorizations and licenses from authorities having jurisdiction for performance of the Work.
- 7. Initial progress report.
- 8. Report of preconstruction conference.
- I. Application for Payment at Substantial Completion: After issuance of the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portions of the Work claimed as substantially complete.
 - 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
 - 2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.
- J. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:
 - 1. Evidence of completion of Project closeout requirements.
 - 2. Updated final statement, accounting for final changes to the Contract Sum.
 - 3. Evidence that claims have been settled.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 013113 PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 - 1. General project coordination procedures.
 - 2. Administrative and supervisory personnel.
 - 3. Coordination drawings.

B. Related Sections:

- 1. Division 01 Section "Construction Progress Documentation" for preparing and submitting Contractor's construction schedule.
- 2. Division 01 Section "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
- 3. Division 01 Section "Closeout Procedures" for coordinating closeout of the Contract.

1.3 SUBMITTALS

- A. List of Key Personnel Names: Within 14 calendar days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home, office, and cellular telephone numbers and email addresses. Provide names, addresses, and telephone numbers of individuals assigned as alternates in the absence of individuals assigned to Project.
 - 1. Post copies of list in project meeting room, in temporary field office, and by each temporary telephone. Keep list current at all times.

B. Coordination Drawings:

- 1. Initial Submittal: Submit 3 printed copies of each coordination drawing for each condition where Coordination Drawings are required.
- 2. Project Closeout:

- a. Submit 3 printed "Record" copies of each coordination drawing for each condition where Coordination Drawings are required.
- b. Submit "Record" electronic coordination drawing files.

1.4 COORDINATION PROCEDURES

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections, that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
- B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 - 1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.
- C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of Contractor's construction schedule.
 - 2. Preparation of the schedule of values.
 - 3. Installation and removal of temporary facilities and controls.
 - 4. Delivery and processing of submittals.
 - 5. Progress meetings.
 - 6. Preinstallation conferences.
 - 7. Startup and adjustment of systems.
 - 8. Project closeout activities.
- D. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.
 - 1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. Refer to other Sections for disposition of salvaged materials that are designated as Owner's property.

PART 2 - PRODUCTS

2.1 COORDINATION DRAWINGS

- A. Coordination Drawings, General: Prepare coordination drawings in accordance with requirements in individual Sections, where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity. Coordination Drawings shall include the work of multiple trades on the same drawing. Prepare Coordination Drawings in addition to Shop Drawings required in individual Sections.
 - 1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:
 - Use applicable Drawings as a basis for preparation of coordination drawings.
 Prepare sections, elevations, and details as needed to describe relationship of various systems and components.
 - b. Coordinate the addition of trade-specific information to the coordination drawings by multiple contractors in a sequence that best provides for coordination of the information and resolution of conflicts between installed components before submitting for review.
 - c. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
 - d. Indicate space requirements for routine maintenance and for anticipated replacement of components during the life of the installation.
 - e. Show location and size of access doors required for access to concealed dampers, valves, and other controls.
 - f. Indicate required installation sequences.
 - g. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.
- B. Coordination Drawings, Required: Coordination drawings shall include plans, elevations, sections, and details of the Work for each trade as required to adequately represent the work. Clearly indicate and identify conflicts between components for review by Architect. Provide Coordination Drawings as follows:
 - Overhead Work and Work Above Finished Ceilings: Include subframing for support of ceiling and wall systems, conduit and piping runs, plumbing, mechanical, and electrical equipment, and related Work. Locate components to accommodate layout of light fixtures indicated on Drawings. Show the work of each trade including, but not limited to, pipe runs, mechanical ductwork, cable trays, conduit runs, and bracing and supports.
 - a. Indicate locations of all dampers, valves, cleanouts and other devices requiring human access for maintenance and repair. Where access panels

- are required, show locations and indicate size.
- b. Show the height above finish floor each item, demonstrating sufficient space for installation and maintenance. Indicate sizes of ducts, piping and similar items.
- c. Layout of work shall be done in such a manner to avoid conflicts between the work of different trades, finish ceiling heights, soffits, light fixtures or other finish work at ceilings and soffits.
- d. Should unavoidable conflicts occur that affect finish ceiling and soffit heights, methods of installations, methods of construction or means of accessibility, the contractor shall clearly identify each location for review by the Architect.
- 2. Equipment Rooms and Outdoor Service Yards: Show work above and below grade including mechanical, plumbing, fire protection, fire alarm, and electrical equipment, and related supports, accessories, and utility connections. Include the following information:
 - a. Equipment: Show equipment and locations, utility connections, and working and service clearances.
 - b. Utilities: Show above and below grade utilities; indicate heights and below grade elevations, sizes of piping and conduit, dimensions between utilities and between utilities and other obstructions including concrete footings for other work. Show locations of all shut-off and isolation valves, cleanouts, filters, and other devices requiring human access for maintenance and repair.
 - c. Enclosures: Show limits of enclosure including walls, doors, fences, and gates; confirm door and gate access width for equipment.
 - d. Dimensions: Indicate dimensions as appropriate to insure adequate clearance will be provided for installation, service, and operation of equipment; include horizontal and vertical dimensions between utilities to insure clearance for installation of utilities. Include vertical dimension(s) of equipment and distances to overhead obstructions where applicable.
- 3. Roof Mounted Equipment: Show equipment that will be located on the roof, include the following:
 - a. Equipment locations and horizontal distances between equipment.
 - b. Locations of roof penetrations, sizes of penetrations, and indicate the horizontal distance between penetrations and roof mounted equipment.
 - c. Pipe and conduit runs including locations and type(s) of supports.
 - d. Distance between all roof mounted equipment and roof drainage features. Equipment shall be located so as to not obstruct roof drainage; provide at least 24 inches between equipment platforms and valleys formed by the intersection of roof planes and crickets.
- 4. Underground Site Utilities and Utilities Below Slabs on Grade within Building Areas: Where underground utilities cross other utilities, penetrate footings, underground structures or other obstructions; show the work that will be placed underground; include the following information:
 - a. Indicate types and sizes of utility piping and elevations below grade.

- b. Show footings and other underground structures; where unavoidable conflicts occur between underground structures/footings and utilities, indicate depths below grade and clearly identify locations for sleeving for review by Architect.
- C. Preparation: Prepare coordination drawings electronically using same digital data software program, version, and operating system as the Architect's original Drawings (DWG files).
 - 1. Submittal Format:
 - a. Electronic Format: Submit electronic drawing files using Portable Data File (PDF) format.
 - b. Printed Format: Submit plotted drawings on opaque bond paper not of at least 8.5 inches by 11 inches and not larger than 24 inches by 36 inches.
 - 2. Architect will furnish Contractor digital data files of base drawings as appropriate for use in preparing coordination digital data files.
 - a. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to the Drawings.
 - b. Digital Data Software Program: The Drawings are available in DWG format.
 - c. Contractor shall execute a data licensing agreement in the form of an Agreement form acceptable to the Owner and Architect.
- D. Review: Architect will review coordination drawings to confirm that the Work is being coordinated, but not for the details of the coordination, which are the Contractor's responsibility. If the Architect determines that the coordination drawings are not being prepared in sufficient scope or detail, or are otherwise deficient, the Architect will so inform the Contractor, who shall make changes as directed and resubmit.
- E. Resolution of conflicts occurring in the Work after Coordination Drawings have been prepared shall be the responsibility of the Contractor. Contractor shall bear all costs associated with resolution of conflicts including additional contract time, architectural and engineering services fees, and loss of use to the Owner.

PART 3 - EXECUTION

3.1 GENERAL COORDINATION PROVISIONS

A. Examination of Conditions: Require the Installer of each major component to examine both the substrate and conditions under which Work is to be performed. Do not proceed until unsatisfactory conditions have been corrected in an acceptable manner.

3.2 CLEANING AND PROTECTION

A. Clean and protect construction in progress and adjoining materials in place, during

- handling and installation. Apply protective covering where required to assure protection from damage or deterioration at Substantial Completion.
- B. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period.
- C. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

END OF SECTION

SECTION 013119 PROJECT MEETINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative provisions for project meetings, including, but not limited to, the following:
 - 1. Preconstruction conferences.
 - 2. Preinstallation conferences.
 - 3. Progress meetings.
 - 4. Project Closeout Conference.
- B. Related requirements include but are not limited to the following:
 - 1. Division 01 Sections as applicable to project management.

1.3 PRECONSTRUCTION CONFERENCE

- A. Preconstruction Conference: Schedule a preconstruction conference before starting construction at the project site, at a time convenient to the Owner, Inspector of Record, and the Architect, but no later than 14 days after execution of the Agreement. Hold the conference at the Project Site or another convenient location. Owner and Architect to conduct the meeting to review responsibilities and personnel assignments.
- B. Attendees: Authorized representatives of the Owner, Architect, and their consultants; the Contractor and its superintendent shall attend the conference. Major subcontractors and other concerned parties shall be invited to attend the conference, but attendance is not mandatory. Participants at the conference shall be familiar with the Project and authorized to conclude matters relating to the Work.
- C. Agenda: Discuss items of significance that could affect progress, including but not limited to the following:
 - 1. Tentative construction schedule.
 - 2. Critical work sequencing and long-lead items.
 - 3. Designation of key personnel and their duties.
 - 4. Lines of communication.
 - 5. Procedures for processing field decisions and Change Orders.
 - 6. Procedures for processing Applications for Payment.

- 7. Procedures for RFI's.
- 8. Procedures for testing and inspection.
- 9. Submittal procedures.
- 10. Sustainability requirements including construction waste management and disposal.
- 11. Preparation of record documents.
- 12. Use of the premises.
- 13. Work restrictions and working hours.
- 14. Temporary facilities and controls.
- 15. Parking availability.
- 16. Office, work, and storage areas.
- 17. Equipment deliveries and priorities.
- 18. Safety procedures and first aid.
- 19. Security.
- 20. Housekeeping.
- 21. Owner's alcohol, drug and tobacco policy.
- D. Minutes: Contractor shall record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner, Inspector of Record, and Architect, within three days of the meeting.

1.4 PREINSTALLATION CONFERENCES

- A. Preinstallation Conferences: Conduct a preinstallation conference at the Project Site before each construction activity that requires coordination with other construction.
- B. Attendees: Installers and representatives of manufacturers and fabricators involved in or affected by the installation, and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise the Owner, Inspector of Record, and Architect of scheduled meeting dates.
- C. Agenda: Review the progress of other construction activities and preparations for the particular activity under consideration at each preinstallation conference, including requirements for the following:
 - 1. Contract Documents.
 - 2. Options
 - 3. Related RFI's, Proposal Requests, and Change Orders.
 - 4. Purchases.
 - Deliveries.
 - 6. Submittals.
 - 7. Sustainability requirements.
 - 8. Possible conflicts.
 - 9. Compatibility problems.
 - 10. Time schedules.
 - 11. Weather limitations.
 - 12. Manufacturer's written instructions.
 - 13. Warranty requirements.
 - 14. Compatibility of materials.
 - 15. Acceptability of substrates.

- 16. Temporary facilities.
- 17. Space and access limitations.
- 18. Regulations of authorities having jurisdiction.
- 19. Safety.
- 20. Testing and ionspecting requirements.
- 21. Required performance results.
- 22. Recording requirements.
- 23. Protection.
- 24. Record significant conference discussions, agreements, disagreements, including corrective measures and actions.
- 25. Promptly distribute minutes of the meeting to each party present and to other parties requiring information, including the Owner and the Architect.
- 26. Do not proceed with the installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of Work and reconvene the conference at the earliest feasible date.
- D. Minutes: Contractor shall record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner, Inspector of Record, and Architect, within three days of the meeting.

1.5 PROGRESS MEETINGS

- A. Progress Meetings: Conduct progress meetings at the Project Site at regular intervals to be established by the Architect, Inspector of Record, Contractor, and Owner.
 - 1. Coordinate dates of meetings with preparation of the payment request.
- B. Attendees: In addition to representatives of the Owner and Architect, each subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the conference shall be familiar with the Project and authorized to conclude matters relating to the Work.
- C. Agenda: Review and correct or approve minutes of the previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to the status of the Project. Review proposed percentages of work completed for current months progress payment.
 - 1. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 2. Review the present and future needs of each entity present, including the following:
 - a. Interface requirements.
 - b. Sequence of operation.
 - c. Status of submittals.

- d. Status of Sustainability documentation.
- e. Deliveries.
- f. Off-site fabrication.
- q. Access.
- h. Site utilization.
- i. Temporary facilities and services.
- i. Status of correction of deficient items.
- k. Field observations.
- I. Status of RFI's, Proposal Requests, and Change Orders.
- m. Progress cleaning.
- n. Quality and work standards.
- o. Documentation of information for payment requests.
- p. Request for Information
- D. Minutes: Contractor shall record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner, Inspector of Record, and Architect, within three days of the meeting.
- E. Schedule Updating: Revise the Contractor's Construction Schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue the revised schedule to the Owner, the Architect, and all other parties involved in the project. Failure to revise and keep current the Contractor's construction schedule may be grounds for returning Application for Payment unreviewed.

1.6 PROJECT CLOSEOUT CONFERENCE

- A. Project Closeout Conference: Conduct a project closeout conference, at a time convenient to Owner and Architect, but not less than 90 days prior to the scheduled date of Substantial Completion. Conduct the conference to review requirements and responsibilities related to Project closeout.
- B. Attendees: Authorized representatives of Owner, Architect and their consultants; Contractor and its superintendent. Participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
- C. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:
 - 1. Preparation of record documents.
 - 2. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
 - 3. Submittal of written warranties.
 - 4. Requirements for completing Sustainability documentation.
 - 5. Requirements for preparing operations and maintenance data.
 - 6. Requirements for delivery of material samples, attic stock, and spare parts.
 - 7. Requirements for demonstration and training.
 - 8. Preparation of Contractor's punch list.
 - 9. Procedures for processing Applications for Payment at Substantial Completion and for final payment.
 - 10. Submittal procedures.

- 11. Responsibility for removing temporary facilities and controls.
- D. Minutes: Contractor shall record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner, Inspector of Record, and Architect, within three days of the meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 013200 CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 - 1. Contractor's construction schedule.
 - 2. Special reports.
- B. Related Sections include but are not limited to the following:
 - 1. Division 01 Section "Submittal Procedures" for submitting schedules and reports.
 - 2. Division 01 Section "Quality and Testing Requirements" for submitting a schedule of tests and inspections.

1.3 DEFINITIONS

- A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.
 - 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 - 2. Predecessor Activity: An activity that precedes another activity in the network.
 - 3. Successor Activity: An activity that follows another activity in the network.
- B. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of the Project.
- C. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.
- D. Event: The starting or ending point of an activity.
- E. Float: The measure of leeway in starting and completing an activity.

- 1. Float time is not for the exclusive use or benefit of either Owner or Contractor, but is a jointly owned, expiring Project resource available to both parties as needed to meet schedule milestones and Contract completion date.
- 2. Free float is the amount of time an activity can be delayed without adversely affecting the early start of the successor activity.
- 3. Total float is the measure of leeway in starting or completing an activity without adversely affecting the planned Project completion date.
- F. Milestone: An activity, which occurs in an instant and thus has no time duration, a key or critical point in time for reference or measurement.

1.4 SUBMITTALS

- A. Format for Submittals: Submit required submittals in the following format:
 - 1. Working electronic copy of schedule file, where indicated.
 - 2. PDF electronic file.
- B. Startup Network Diagram: Of size required to display entire network for entire construction period. Show logic ties for activities.
- C. Contractor's Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.
 - 1. Submit electronic copy of schedule labeled to comply with requirements for submittals. Include type of schedule (initial or updated) and date on label.
- D. Construction Schedule Updating Reports: Submit with Applications for Payment.
- E. Special Reports: Submit at time of unusual event.

1.5 QUALITY ASSURANCE

- A. Prescheduling Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Meetings." Review methods and procedures related to the preliminary construction schedule and Contractor's construction schedule, including, but not limited to, the following:
 - 1. Discuss constraints, including, work stages, area separations, and partial Owner occupancy
 - 2. Review delivery dates for Owner-furnished products.
 - 3. Review schedule for work of Owner's separate contracts.
 - 4. Review submittal requirements and procedures.
 - 5. Review time required for review of submittals and resubmittals.
 - 6. Review requirements for tests and inspections by independent testing and inspecting agencies.
 - 7. Review time required for Project closeout and Owner startup procedures, including commissioning activities.
 - 8. Review and finalize list of construction activities to be included in schedule.
 - 9. Review procedures for updating schedule.

1.6 COORDINATION

- A. Coordinate preparation and processing of schedules with performance of construction activities and with scheduling of separate contractors.
- B. Coordinate Contractor's construction schedule with the submittal schedule and other required schedules.
 - 1. Secure time commitments for performing critical elements of the Work from entities involved.
 - 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

PART 2 - PRODUCTS

2.1 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

- A. Time Frame: Extend schedule from date established for the Notice to Proceed to date of final completion.
 - 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.
- B. Activities: Treat each story or separate area as a separate numbered activity for each main element of the Work. Comply with the following:
 - 1. Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by Architect.
 - 2. Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 - 3. Submittal Review Time: Include review and resubmittal times indicated in Division 01 Section "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor's construction schedule with submittal schedule.
 - 4. Startup and Testing Time: Include no fewer than 15 days for startup and testing.
 - 5. Completion: Indicate completion in advance of date established for completion, and allow time for Architect's administrative procedures necessary for certification of completion.
 - 6. Punch List and Final Completion: Include not more than 30 days for completion of punch list items and final completion.
- C. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule, and show how the sequence of the Work is affected.
 - 1. Phasing: Arrange list of activities on schedule by phase.
 - 2. Work by Owner: Include a separate activity for each portion of the Work performed by Owner.

- 3. Products Ordered in Advance: Include a separate activity for each product. Include delivery date indicated in Division 01 Section "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
- 4. Owner-Furnished Products: Include a separate activity for each product. Include delivery date indicated in Division 01 Section "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
- 5. Work Restrictions: Show the effect of the following items on the schedule:
 - a. Coordination with existing construction.
 - b. Limitations of continued occupancies.
 - c. Uninterruptible services.
 - d. Partial occupancy before Substantial Completion.
 - e. Use of premises restrictions.
 - f. Provisions for future construction.
 - g. Seasonal variations.
 - h. Environmental control.
- 6. Work Stages: Indicate important stages of construction for each major portion of the Work, including, but not limited to, the following:
 - a. Submittals.
 - b. Purchases.
 - c. Mockups.
 - d. Fabrication.
 - e. Sample testing.
 - f. Deliveries.
 - g. Installation.
 - h. Tests and inspections.
 - i. Adjusting.
 - j. Curing.
 - k. Startup and placement into final use and operation.
- 7. Construction Areas: Identify each major area of construction for each major portion of the Work. Indicate where each construction activity within a major area must be sequenced or integrated with other construction activities to provide for the following:
 - a. Structural completion.
 - b. Temporary enclosure and space conditioning.
 - c. Permanent space enclosure.
 - d. Completion of mechanical installation.
 - e. Completion of electrical installation.
 - f. Substantial Completion.
- D. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and final completion.
- E. Contract Modifications: For each proposed contract modification and concurrent with its submission, prepare a time-impact analysis to demonstrate the effect of the proposed change on the overall project schedule.

- F. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:
 - 1. Unresolved issues.
 - 2. Unanswered Requests for Information.
 - 3. Rejected or unreturned submittals.
 - 4. Notations on returned submittals.
 - 5. Pending modifications affecting the Work and Contract Time.
- G. Recovery Schedule: When periodic update indicates the Work is 14 or more calendar days behind the current approved schedule, submit a separate recovery schedule indicating means by which Contractor intends to regain compliance with the schedule. Indicate changes to working hours, working days, crew sizes, and equipment required to achieve compliance, and date by which recovery will be accomplished.
- H. Computer Scheduling Software: Prepare schedules using current version of a program that has been developed specifically to manage construction schedules.

2.2 CONTRACTOR'S CONSTRUCTION SCHEDULE (CPM SCHEDULE)

- A. General: Prepare network diagrams using AON (activity-on-node) format.
- B. CPM Schedule: Prepare Contractor's construction schedule using a time-scaled CPM network analysis diagram for the Work.
 - 1. Develop network diagram in sufficient time to submit CPM schedule so it can be accepted for use no later than 30 days after date established for the Notice to Proceed.
 - a. Failure to include any work item required for performance of this Contract shall not excuse Contractor from completing all work within applicable completion dates, regardless of Architect's approval of the schedule.
 - 2. Conduct educational workshops to train and inform key Project personnel, including subcontractors' personnel, in proper methods of providing data and using CPM schedule information.
 - 3. Establish procedures for monitoring and updating CPM schedule and for reporting progress. Coordinate procedures with progress meeting and payment request dates.
 - 4. Use "one workday" as the unit of time for individual activities. Indicate nonworking days and holidays incorporated into the schedule in order to coordinate with the Contract Time.
- C. CPM Schedule Preparation: Prepare a list of all activities required to complete the Work. Prepare a skeleton network to identify probable critical paths.
 - 1. Activities: Indicate the estimated time duration, sequence requirements, and relationship of each activity in relation to other activities. Include estimated time frames for the following activities:

- a. Preparation and processing of submittals.
- b. Mobilization and demobilization.
- c. Purchase of materials.
- d. Delivery.
- e. Fabrication.
- f. Utility interruptions.
- g. Installation.
- h. Work by Owner that may affect or be affected by Contractor's activities.
- i. Testing
- j. Commissioning.
- k. Punch list and final completion.
- I. Activities occurring following final completion.
- 2. Critical Path Activities: Identify critical path activities, including those for interim completion dates. Scheduled start and completion dates shall be consistent with Contract milestone dates.
- 3. Processing: Process data to produce output data on a computer-drawn, time-scaled network. Revise data, reorganize activity sequences, and reproduce as often as necessary to produce the CPM schedule within the limitations of the Contract Time.
- 4. Format: Mark the critical path. Locate the critical path near center of network; locate paths with most float near the edges.
 - a. Subnetworks on separate sheets are permissible for activities clearly off the critical path.
- D. Contract Modifications: For each proposed contract modification and concurrent with its submission, prepare a time-impact analysis using a network fragment to demonstrate the effect of the proposed change on the overall project schedule.
- E. Initial Issue of Schedule: Prepare initial network diagram from a sorted activity list indicating straight "early start-total float." Identify critical activities. Prepare tabulated reports showing the following:
 - 1. Contractor or subcontractor and the Work or activity.
 - 2. Description of activity.
 - 3. Main events of activity.
 - 4. Immediate preceding and succeeding activities.
 - 5. Early and late start dates.
 - 6. Early and late finish dates.
 - 7. Activity duration in workdays.
 - 8. Total float or slack time.
 - 9. Average size of workforce.
- F. Schedule Updating: Concurrent with making revisions to schedule, prepare tabulated reports showing the following:
 - 1. Identification of activities that have changed.
 - 2. Changes in early and late start dates.
 - 3. Changes in early and late finish dates.
 - Changes in activity durations in workdays.

- 5. Changes in the critical path.
- 6. Changes in total float or slack time.
- 7. Changes in the Contract Time.

2.3 SPECIAL REPORTS

- A. Reporting Unusual Events: When an event of an unusual and significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, response by Contractor's personnel, evaluation of results or effects, and similar pertinent information. Advise Owner in advance when these events are known or predictable.
 - 1. Submit special reports directly to Owner within one day of an occurrence. Distribute copies of report to parties affected by the occurrence.
- B. Field Condition Reports: Immediately on discovery of a difference between field conditions and the Contract Documents, prepare a detailed report. Submit with a request for information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

PART 3 - EXECUTION

3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE

- A. Contractor's Construction Schedule Updating: At progress meetings, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.
 - 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 - 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
 - 3. As the Work progresses, indicate final completion percentage for each activity.
- B. Distribution: Distribute copies of approved schedule to Architect, Owner, Inspector of Record, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.
 - 1. Post copies in Project meeting rooms and temporary field offices.
 - 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION

SECTION 013233 PHOTOGRAPHIC DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for the following:
 - 1. Preconstruction photographs.
 - 2. Concealed Work photographs.
 - 3. Periodic construction photographs.

B. Related Sections:

1. Division 31 Section "Site Clearing" for photographic documentation before site clearing operations commence.

1.3 SUBMITTALS

- A. Digital Photographs: Submit image files at monthly intervals coinciding with the cutoff date associated with each Application for Payment.
 - 1. Submit photos by uploading to Project FTP site. Include copy of key plan indicating each photograph's location and direction.
 - 2. Identification: Provide the following information with each image description:
 - a. Date photograph was taken.
 - b. Description of location, vantage point, and direction.
 - c. Unique sequential identifier keyed to accompanying key plan.
 - 3. Key Plan: Include key plan of Project site and/or building(s) indicating location and direction of each photograph or group of photographs. Include same information as corresponding photographic documentation.

1.4 PHOTOGRAPHIC FORMATS AND MEDIA

A. Digital Photographs: Provide color images in JPG format, produced by a digital camera with minimum sensor size of 12 megapixels, and at an image resolution of not less than 3200 by 2400 pixels. Use flash in low light levels or backlit conditions.

- B. Digital Images: Submit digital media as originally recorded in the digital camera, without alteration, manipulation, editing, or modifications using image-editing software.
- C. File Names: Name media files with location or area photograph was taken, date, and sequential numbering suffix.

1.5 CONSTRUCTION PHOTOGRAPHS

- A. General: Take photographs with maximum depth of field and in focus.
- B. Key Plan: Maintain key plan with each set of construction photographs that identifies each photographic location.
- C. Preconstruction Photographs: Before commencement of the Work, take photographs of Project site and adjacent areas, including existing items to remain during construction, from different vantage points, as necessary to record preconstruction conditions.
 - 1. Take additional photographs as needed to record settlement or cracking of existing adjacent structures, pavements, and improvements.
- D. Periodic Construction Photographs: Take photographs to record construction progress at not greater than bi-weekly intervals with the cutoff date associated with each Application for Payment. Select vantage points to show status of construction and progress since last photographs were taken.
- E. Concealed Work Photographs: Before proceeding with installing work that will conceal other work, take photographs sufficient in number, with annotated descriptions, to record nature and location of concealed Work, including, but not limited to, the following:
 - 1. Underground utilities.
 - 2. Underslab services.
 - 3. Piping.
 - 4. Electrical conduit.
 - 5. Waterproofing and weather-resistant barriers.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 013300 SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Submittal schedule requirements.
- 2. Administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
- 3. Cost for multiple resubmittals.

B. Related Sections:

- 1. Division 01 Section "Payment Procedures" for submitting Applications for Payment and the schedule of values.
- 2. Division 01 Section "Project Management and Coordination" for submitting coordination drawings.
- 3. Division 01 Section "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
- 4. Division 01 Section "Photographic Documentation" for submitting preconstruction photographs, periodic construction photographs, and final completion construction photographs.
- 5. Division 01 Section "Quality and Testing Requirements" for submitting test and inspection reports, and schedule of tests and inspections.
- 6. Division 01 Section "Closeout Procedures" for submitting closeout submittals and maintenance material submittals.
- 7. Division 01 Section "Operation and Maintenance Data" for submitting operation and maintenance manuals.
- 8. Division 01 Section "Project Record Drawings" for submitting record Drawings.
- 9. Division 01 Section "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.

1.3 SUBMITTAL SCHEDULE

A. Submittal Schedule: Submit as a submittal, a list of submittals arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or modifications to submittals

noted by the Architect and additional time for handling and reviewing submittals required by those corrections.

- 1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.
- 2. Initial Submittal: Submit concurrently with start-up construction schedule. Include submittals required during the first 60 days of construction. List those submittals required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication.
- 3. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule.
 - a. Submit revised submittal schedule to reflect changes in current status and timing for submittals.
- 4. Format: Arrange the following information in a tabular format:
 - Scheduled date for first submittal.
 - b. Specification Section number and title.
 - c. Name of subcontractor.
 - d. Description of the Work covered.
 - e. Scheduled date for Architect's final release or approval.
 - f. Scheduled dates for purchasing.
 - g. Scheduled date of fabrication.
 - h. Scheduled dates for installation.
 - i. Activity or event number.

1.4 SUBMITTAL FORMAT AND PROCEDURES

- A. General: Prepare and submit submittals required by individual Specification Sections.
 - 1. Architect will not review submittals received from Contractor that do not have Contractor's review and approval.
 - 2. Architect will not review submittals received from sources other than the Contractor.
- B. Electronic Digital Submittals: Prepare submittals as PDF package unless otherwise indicated, incorporate complete information into each PDF file, name PDF file with submittal number, and transmit submittal package to Architect via email.
 - 1. Paper Submittals: Where paper submittals are requested, necessary, or required in lieu of electronic submittals, prepare submittals in paper form and deliver to Architect. Transmit each paper submittal using transmittal form. Comply with the following:
 - a. Place a permanent label or title block on each submittal item for identification; include name of firm or entity that prepared submittal.
 - b. Provide a space approximately 6 by 8 inches on label or beside title block to record Contractor's review and approval markings and action taken by Architect.

- c. Number of Copies: Submit not less than three paper copies of each submittal unless otherwise indicated. Architect will return two copies.
- d. Transmittal for Submittals: Assemble each submittal individually and appropriately for transmittal and handling. Transmit each submittal using transmittal form.
- C. Submittal Cover Page Information: Include the following information on the submittal cover page for each submittal:
 - 1. Project name.
 - 2. Date.
 - 3. Name of Architect.
 - 4. Name of Contractor.
 - 5. Name of firm or entity that prepared submittal.
 - 6. Names of subcontractor, manufacturer, and supplier.
 - 7. Unique submittal number, including revision identifier. Include Specification Section number with sequential alphanumeric identifier and alphanumeric suffix for resubmittals.
 - 8. Number and title of Specification Section, with paragraph number and generic name for each of multiple items.
 - 9. Drawing number and detail references, as appropriate.
 - 10. Indication of full or partial submittal.
 - 11. Location(s) where product is to be installed, as appropriate.
 - 12. Other necessary identification.
 - 13. Remarks.
 - 14. Signature of transmitter.
 - 15. Contractor's review/approval stamp of size required by contractor, approximately 3 inches by 3 inches, on or beside title block to record Contractor's review and approval.
 - 16. Space for Architect's review stamp of not less than 4 inches wide by 3-1/2 inches high on or beside title block to record Architect's review stamp and action taken by Architect.

D. Product Options:

- 1. Clearly identify options requiring selection by Architect.
- 2. Clearly identify product options required to comply with the Contract Documents.
- E. Deviations and Additional Information: On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested by Architect on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.
- F. Field Conditions: Indicate field conditions where applicable to the work associated with the submittal.
- G. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other

- submittals, and related activities that require sequential activity.
- 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
- 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
- 4. Coordinate timing of submitting submittals for related parts of the Work specified in different Sections so processing will not be delayed because of need to review related submittals concurrently for coordination.
 - a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- H. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow 14 calendar days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 14 calendar days for review of each resubmittal.
 - 4. Sequential Review: Where sequential review of submittals by Architect's consultants, Owner, or other parties is indicated, allow 21 calendar days for initial review of each submittal
 - 5. Concurrent Consultant Review: Where the Contract Documents indicate that submittals may be transmitted simultaneously to Architect and to Architect's consultants, allow 14 calendar days for review of each submittal. Submittal will be returned to Architect before being returned to Contractor.
 - a. Submit one copy of submittal to concurrent reviewer in addition to specified number of copies to Architect.
- I. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision
 - 3. Resubmit submittals until they are marked with approval notation from Architect's action stamp.
- J. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.
- K. Use for Construction: Retain complete copies of submittals on Project site. Use only final submittals that are marked with acceptable notation from Architect's action stamp.

1.5 SUBMITTAL REQUIREMENTS

- A. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are unsuitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
 - 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams that show factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
 - 5. Submit Product Data before Shop Drawings, and before or concurrently with Samples.
- B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
 - 2. Drawing Sheet Size: Except for templates, patterns, and similar full-size Drawings, prepare Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than 30 by 42 inches.
 - 3. Submit Shop Drawings in PDF format unless otherwise indicated.

- C. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other materials.
 - 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 - 2. Identification: Permanently attach label on unexposed side of Samples that includes the following:
 - a. Project name and submittal number.
 - b. Generic description of Sample.
 - c. Product name and name of manufacturer.
 - d. Sample source.
 - e. Number and title of applicable Specification Section.
 - f. Specification paragraph number and generic name of each item.
 - 3. Submit samples in PDF format unless physical samples are required.
 - 4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 - a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 - b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.
 - 5. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 - a. Number of Samples: Submit one full set of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.
 - 6. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 - a. Number of Samples: Submit three (3) sets of Samples. Architect will retain two (2) Sample sets; remainder will be returned.
 - 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated

- 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three (3) sets of paired units that show approximate limits of variations.
- D. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
 - 1. Type of product. Include unique identifier for each product indicated in the Contract Documents or assigned by Contractor if none is indicated.
 - 2. Manufacturer and product name, and model number if applicable.
 - 3. Number and name of room or space.
 - 4. Location within room or space.
- E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.
- F. Design Data: Prepare and submit written and graphic information indicating compliance with indicated performance and design criteria in individual Specification Sections. Include list of assumptions and summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Number each page of submittal.

G. Certificates:

- 1. Certificates and Certifications Submittals: Submit a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity. Provide a notarized signature where indicated.
- 2. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- 3. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
- 4. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
- 5. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
- 6. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

H. Test and Research Reports:

1. Compatibility Test Reports: Submit reports written by a qualified testing agency,

- on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
- 2. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
- 3. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
- 4. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
- 5. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
- 6. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:
 - a. Name of evaluation organization.
 - b. Date of evaluation.
 - c. Time period when report is in effect.
 - d. Product and manufacturers' names.
 - e. Description of product.
 - f. Test procedures and results.
 - g. Limitations of use.

1.6 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are insufficient to perform services or certification required, submit a written request for additional information to Architect.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF file(s) of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services

1.7 CONTRACTOR'S REVIEW

- A. Contractor's Review of Submittals: Contractor shall review each submittal and check for completeness, coordination with other Work of the Contract, and compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.
- B. Contractor's Approval: Indicate Contractor's approval for each submittal with a uniform approval stamp. Include name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
 - 1. Architect will not review submittals received from Contractor that do not have Contractor's review and approval.
 - 2. Contractor's approval shall certify the following actions by the Contractor:
 - a. Field measurements have been determined, verified, and indicated on submittal.
 - b. Field conditions have been verified and coordinated with Work associated with the submittal.
 - c. The Work associated with the submittal is in conformance with the Contract Documents.
 - d. Work being performed by various subcontractors and trades is coordinated with Work associated with the submittal including work being performed by others for the Owner.
 - e. Deviations from the Contract Documents are identified and notes.

1.8 ARCHITECT'S REVIEW

- A. Architect's Review and Action: Architect will review each submittal, indicate corrections or revisions required, mark with an action stamp indicating one of the following actions, and return it
 - 1. Reviewed: Final unrestricted release, work may proceed, provided it complies with the Contract Documents.
 - 2. Furnish as Corrected: Final but restricted release, work may proceed, provided written confirmation is delivered to Architect by Contractor that installed work complied with notations and corrections on submittal and with Contract Documents.
 - 3. Revise and Resubmit: Returned for resubmittal, do not proceed with work. Revise submittal in accordance with notations thereon, and resubmit without delay to obtain an acceptable action marking. Do not allow submittals with this marking (or unmarked submittals where a marking is required) to be used in connection with performance of the Work.
 - 4. Rejected: Submittal content varies from the Contract Documents and is not acceptable for use on the Project, do not proceed with work. Revise submittal in accordance with notations thereon and resubmit without delay to obtain an acceptable action marking. Do not allow submittals with this marking (or unmarked submittals where a marking is required) to be used in connection with performance of the Work.

- B. Non-conforming Submittals: The following are considered non-confirming submittals and will not be reviewed by the Architect.
 - 1. Architect will not review submittals received from Contractor that do not have Contractor's review and approval.
 - 2. Architect will not review submittals received from sources other than the Contractor.
 - 3. Partial submittals are not acceptable, will be considered nonresponsive, and will be returned without review.
 - 4. Incomplete submittals are not acceptable, will be considered nonresponsive, and will be returned without review.
- C. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

1.9 COST FOR MULTIPLE RESUBMITTALS

A. Contractor's initial submittal and one resubmittal are included in the Architect's Construction Administration services to the Owner. Architect's services for review of subsequent resubmittals will be charged to the Owner at the Architect's current billing rate, and the Owner will deduct the charges from the Contract Amount by a change order.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 014000 QUALITY AND TESTING REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control including but not limited to the following:
 - 1. General quality requirements.
 - 2. Reports and documents.
 - 3. Contractor's responsibilities in regard to testing and inspections.
 - 4. Inspector of Record (IOR).
 - 5. Testing Agency.
 - 6. Governing agency testing and inspection requirements.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.

C. Related Requirements:

- 1. Divisions 02 through 33 Sections for specific test and inspection requirements.
- D. DSA Testing and Inspection Requirements for School Construction: The following requirements are per the Division of the State Architect (DSA); requirements indicated below may be repeated elsewhere in this Section or in other Sections of the Project Manual, where conflicts occur, the most stringent condition shall apply.
 - 1. Tests:
 - a. The owner will select an independent testing laboratory, approved by DSA,

- to conduct the tests. Selection of the material required to be tests shall be by the laboratory or the Owner's representative and not by the Contractor.
- b. The Contractor shall notify the Owner's representative a sufficient time in advance of the manufacture of material to be supplied by him under the Contract Documents, which must by terms of the Contract be tested, in order that the Owner may arrange for the testing of same at the source of supply.
- c. Any material shipped by the Contractor from the source of supply prior to having satisfactorily passed such testing and inspection or prior to the receipt of notice from said representative that such testing and inspection will not be required shall not be incorporated in the job.
- d. The Owner will pay testing laboratory costs for all tests and inspections, but may be reimbursed by the Contractor for such costs under the Contract documents.
- 2. Tests Reports: One copy of all test reports shall be forwarded to the Division of the State Architect by the testing agency. Such reports shall include all the tests made, regardless of whether such tests indicate that the material is satisfactory or unsatisfactory. Samples taken but not tested shall also be reported. Records of special sampling operations as required shall also be reported. The reports shall show that the material or materials were sampled and tested in accordance with the requirements of Title 24 and with the approved specifications. Test reports shall show the specified design strength. They shall also state defiantly whether or not the material or materials tested comply with requirements.
- 3. Verification of Test Reports: Each testing agency shall submit to the Division of the State Architect a verified report in duplicate covering all the tests which are required to be made by that agency during the progress of the project. Such report shall be furnished each time that work on the project is suspended, covering the tests up to that time, and at the completion of the project, covering all tests.
- 4. Inspection by the Owner:
 - a. The Owner and his representatives shall at all times have access for the purpose of inspection to all parts of the work and to the shops wherein the work is in preparation, and the Contractor shall at all times maintain proper facilities and provide safe access for such inspection.
 - b. The Owner shall have the right to reject materials and workmanship which are defective, or to require their correction. Rejected workmanship shall be satisfactorily corrected and rejected materials shall be removed from the premises without charge to the Owner. If the Contractor does no correct such rejected work within a reasonable time, fixed by written notice, the Owner may correct same and charge expense to the Contractor.
 - c. Should it be considered necessary or advisable by the Owner at any time before final acceptance of the entire work to make an examination of the work already completed by removing or tearing out the same, the Contractor shall on request promptly furnish all necessary facilities, labor and materials. If such work is found to be defective in any respect due to the fault of the Contractor or his subcontractor, he shall defray all expenses of such examinations and of satisfactory reconstruction. If however, such work is found to meet the requirements of the Contract, the additional cost

of labor and material necessarily involved in the examination and replacement shall be allowed the Contractor.

5. Inspector – Owner's:

- a. An Inspector employed by the Owner, and approved by DSA, in accordance with the requirements of the California Code of Regulations, Title 24 will be assigned to the work. His duties are specifically defined in Title 24, Part I, Sec. 4-342.
- b. The work of construction in all stages of progress shall be subject to the personal continuous observation of the Inspector. He shall have free access to any or all parts of the work at any time. The Contractor shall furnish the Inspector reasonable facilities for obtaining such information as may be necessary to keep him fully informed respecting the progress and manner of the work and the character of materials. Inspection of the work shall not relieve the Contractor from any obligation to fulfill this contract.
- 6. Inspector Owner Field Office: The Contractor shall provide for the use of the Owner's Inspector a temporary office to be located as directed by the Inspector and to be maintained until removal is authorized by the Owner. This office shall of substantial water proof construction with adequate natural light and ventilation by means of stock design windows. The door shall have a lock. A table satisfactory for the study of plans and two chairs shall be provided by the Contractor. The Contractor shall provide and pay for adequate electric lights, private local telephone service with a loud exterior bell, and adequate heat for this field office until the completion of the Contract.

1.3 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.
- C. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.
- D. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
- E. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.

- F. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- G. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- H. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).
- I. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of 5 previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.4 CONFLICTING REQUIREMENTS

- A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.5 REPORTS AND DOCUMENTS

- A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Reports shall be prepared by the person performing the testing and inspecting. Include the following:
 - Date of issue.
 - 2. Project title and number.
 - 3. Name, address, and telephone number of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - 8. Complete test or inspection data.
 - 9. Test and inspection results and an interpretation of test results.

- 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
- 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
- 12. Name and signature of laboratory inspector.
- 13. Recommendations on retesting and reinspecting.
- B. Governing Agency Verified Reports: Complete and submit Verified Reports as required by the Division of the State Architect and the 2019 California Administrative Code, Section 4-336. Reports are required to be completed by Architect, Architect's consulting Engineers, Owner's Inspector of Record, Contractor, and Testing Agency.
 - 1. Form:
 - a. DSA form DSA-6C for Contractor.
 - b. DSA form DSA-6PI for Project Inspector.
 - c. DSA form DSA-6A/E for Architect and Architect's consulting Engineers.
- C. Manufacturer's Technical Representative's Field Reports: Provide written report documenting tests and inspections specified in other Sections. Reports shall be prepared by Manufacturer's technical representative performing the testing and inspecting. Include the following:
 - 1. Name, address, and telephone number of technical representative making report.
 - 2. Statement on condition of substrates and their acceptability for installation of product.
 - 3. Statement that products at Project site comply with requirements.
 - 4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
 - 5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 6. Statement whether conditions, products, and installation will affect warranty.
 - 7. Other required items indicated in individual Specification Sections.
- D. Factory-Authorized Service Representative's Reports: Provide written report documenting tests and inspections specified in other Sections. Reports shall be prepared by Factory-authorized service representative performing the testing and inspecting. Include the following:
 - 1. Name, address, and telephone number of factory-authorized service representative making report.
 - 2. Statement that equipment complies with requirements.
 - 3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 4. Statement whether conditions, products, and installation will affect warranty.
 - 5. Other required items indicated in individual Specification Sections.
- E. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar

documents, established for compliance with standards and regulations bearing on performance of the Work.

1.6 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Professional Engineer Qualifications: A professional engineer who is legally licensed to practice in the state where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.
- F. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.
 - 1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
 - 2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.
- G. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- H. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- I. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:

- 1. Contractor responsibilities include the following:
 - a. Provide test specimens representative of proposed products and construction.
 - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 - c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements.
 - d. Build site-assembled test assemblies and mockups using installers who will perform same tasks for Project.
 - e. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 - f. When testing is complete, remove test specimens, assemblies, and mockups; do not reuse products on Project.
- 2. Testing Agency Responsibilities: Submit a written report of each test, inspection, and similar quality-assurance service to Architect, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.

1.7 INSPECTOR OF RECORD

- A. General: Owner will employ an Inspector of Record (IOR) for continuous inspection of the Work. Inspector of Record shall be acceptable to Architect and approved by the Division of the State Architect.
 - 1. Inspector of Record shall act under the direction of the Architect and shall be subject to supervision by a representative of the Division of the State Architect.
- B. Qualifications for Inspector of Record: Qualifications for the Inspector of Record shall be as stated in the California Code of Regulations, Title 24, Part 1, 2019 California Administrative Code, Section 4-333.1. Inspector of Record shall be DSA certified under one of the following classes:
 - 1. Class 1: May inspect any project.
 - 2. Class 2: May inspect any project except a project containing one or more new large structures with a primary lateral load resisting system of steel, masonry, or concrete.
 - 3. Class 3: May inspect projects containing alterations to approved buildings, site placement of relocatable buildings, and construction of minor structures.
 - 4. Class 4: May inspect site placement of relocatable buildings and associated site work.
- C. Duties of the Inspector of Record: Duties of the Inspector of Record shall be as stated in the California Code of Regulations, Title 24, Part 1, 2019 California Administrative Code, Sections 4-333(b) and 4-342, and include the following:
 - 1. Provide continuous inspection of the work.

- 2. Maintain files and records of approved plans and specifications including addenda and change orders.
- 3. Prepare semi-monthly reports of the progress of the work and submit copies to the Architect and the Division of the State Architect.
- 4. Notify the Division of the State Architect at the following times:
 - a. At the start of construction of the project or restart of construction if work has suspended for a period of 2 or more weeks.
 - b. At least 48 hours in advance of the time when foundation trenches will be complete, ready for footing forms.
 - c. At least 48 hours in advance of the first placement of foundation concrete and 24 hours in advance of any subsequent or significant concrete placement.
 - d. When all work on the project has been suspended for a period of more than 2 weeks.
- 5. Prepare and maintain records of certain phases of construction including but not limited to the following:
 - a. Concrete placing operations. Show date and time of placing concrete and the time and date of removal of forms in each portion of the structure.
 - b. Welding operations. The record shall include identification marks of welders, lists of defective welds, and manner of correction of defects.
- 6. Notify the Contractor, in writing, of any deviations from the approved construction documents.
- 7. Prepare and submit IOR's Verified Report as required by DSA.

1.8 TESTING AGENCY

- A. General: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to conduct tests and inspections required by authorities having jurisdiction. Testing agency shall be acceptable to Architect and the Division of the State Architect. Requirements for tests and testing agency shall be as stated in the California Code of Regulations, Title 24, Part 1, 2019 California Administrative Code, Section 4-335.
 - 1. Costs for testing agency services will be paid by the Owner.
 - 2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be paid by the Owner and the amount will be deducted from the Contract Sum by Change Order.
- B. Testing Agency Responsibilities: Cooperate with Architect and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Perform testing as required by the Contract Documents.
 - 2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.

- 3. Taking all test specimens.
- 4. Prepare written reports of tests and inspections, and submit reports of each test, inspection, and similar quality-control service to Architect, Division of the State Architect, and Contractor.
- 5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
- 6. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
- 7. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviews the completeness and adequacy of those procedures to perform the Work.
- 8. Retesting and reinspecting corrected work.
- 9. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
- 10. Do not perform any duties of Contractor.

1.9 CONTRACTOR REQUIREMENTS

- A. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.
 - 1. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
 - 2. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 - a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 - 3. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.
 - 4. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 - 5. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 - 6. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.
 - 7. Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 - a. Access to the Work.
 - b. Incidental labor and facilities necessary to facilitate tests and inspections.
 - c. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
 - d. Facilities for storage and field curing of test samples.

- e. Preliminary design mix proposed for use for material mixes that require control by testing agency.
- f. Security and protection for samples and for testing and inspecting equipment at Project site.
- 8. Coordinate sequence of activities to accommodate required quality-assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - a. Schedule times for tests, inspections, obtaining samples, and similar activities.
- B. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Division 01 Section "Submittal Procedures."
- C. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.

1.10 TESTS AND INSPECTIONS

A. Structural Tests and Inspections shall be as specified in Division 02 through 33 Sections for specific materials and as required by form DSA-103 which lists tests and inspections required by DSA as applicable to Project conditions.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Architect.
 - 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's reference during normal working hours.

3.2 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Division 01 Section "Execution."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION

SECTION 014200 REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract. Architect's approval does not release the Contractor from the responsibility to fulfill Contract requirements.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Unload, temporarily store, unpack, assemble, erect, place, anchor, apply, work to dimension, finish, cure, protect, clean, and similar operations at Project site.
- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.3 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and

- effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
- B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.
- C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.4 ABBREVIATIONS AND ACRONYMS

- A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
 - 1. AABC Associated Air Balance Council; www.aabc.com.
 - 2. AAMA American Architectural Manufacturers Association; www.aamanet.org.
 - AAPFCO Association of American Plant Food Control Officials; www.aapfco.org.
 - 4. AASHTO American Association of State Highway and Transportation Officials; www.transportation.org.
 - 5. AATCC American Association of Textile Chemists and Colorists; www.aatcc.org.
 - 6. ABMA American Bearing Manufacturers Association; www.americanbearings.org.
 - 7. ABMA American Boiler Manufacturers Association; www.abma.com.
 - 8. ACI American Concrete Institute; (Formerly: ACI International); www.abma.com.
 - 9. ACPA American Concrete Pipe Association; www.concrete-pipe.org.
 - 10. AEIC Association of Edison Illuminating Companies, Inc. (The); www.aeic.org.
 - 11. AF&PA American Forest & Paper Association; www.afandpa.org.
 - 12. AGA American Gas Association; www.aga.org.
 - 13. AHAM Association of Home Appliance Manufacturers; www.aham.org.
 - 14. AHRI Air-Conditioning, Heating, and Refrigeration Institute (The); www.ahrinet.org.
 - 15. Al Asphalt Institute; <u>www.asphaltinstitute.org</u>.
 - 16. AIA American Institute of Architects (The); www.aia.org.
 - 17. AISC American Institute of Steel Construction; www.aisc.org.
 - 18. AISI American Iron and Steel Institute; www.steel.org.
 - 19. AITC American Institute of Timber Construction; www.aitc-glulam.org.
 - 20. AMCA Air Movement and Control Association International, Inc.; www.amca.org.
 - 21. ANSI American National Standards Institute; www.ansi.org.
 - 22. AOSA Association of Official Seed Analysts, Inc.; www.aosaseed.com.
 - 23. APA APA The Engineered Wood Association; www.apawood.org.

- 24. APA Architectural Precast Association; www.archprecast.org.
- 25. API American Petroleum Institute; www.api.org.
- 26. ARI Air-Conditioning & Refrigeration Institute; (See AHRI).
- 27. ARI American Refrigeration Institute; (See AHRI).
- 28. ARMA Asphalt Roofing Manufacturers Association; www.asphaltroofing.org.
- 29. ASCE American Society of Civil Engineers; www.asce.org.
- 30. ASCE/SEI American Society of Civil Engineers/Structural Engineering Institute; (See ASCE).
- 31. ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers; www.ashrae.org.
- 32. ASME ASME International; (American Society of Mechanical Engineers); www.asme.org.
- 33. ASSE American Society of Safety Engineers (The); www.asse.org.
- 34. ASSE American Society of Sanitary Engineering; www.asse-plumbing.org.
- 35. ASTM ASTM International; www.astm.org.
- 36. ATIS Alliance for Telecommunications Industry Solutions; www.atis.org.
- 37. AWEA American Wind Energy Association; www.awea.org.
- 38. AWI Architectural Woodwork Institute; www.awinet.org.
- 39. AWMAC Architectural Woodwork Manufacturers Association of Canada; www.awmac.com.
- 40. AWPA American Wood Protection Association; <u>www.awpa.com</u>.
- 41. AWS American Welding Society; www.aws.org.
- 42. AWWA American Water Works Association; www.awwa.org.
- 43. BHMA Builders Hardware Manufacturers Association; www.buildershardware.com.
- 44. BIA Brick Industry Association (The); www.gobrick.com.
- 45. BICSI BICSI, Inc.; www.bicsi.org.
- 46. BIFMA BIFMA International; (Business and Institutional Furniture Manufacturer's Association); www.bifma.org.
- 47. BISSC Baking Industry Sanitation Standards Committee; www.bissc.org.
- 48. BWF Badminton World Federation; (Formerly: International Badminton Federation); www.bissc.org.
- 49. CDA Copper Development Association; www.copper.org.
- 50. CEA Canadian Electricity Association; www.electricity.ca.
- 51. CEA Consumer Electronics Association; www.ce.org.
- 52. CFFA Chemical Fabrics and Film Association, Inc.; www.chemicalfabricsandfilm.com.
- 53. CFSEI Cold-Formed Steel Engineers Institute; www.cfsei.org.
- 54. CGA Compressed Gas Association; www.cganet.com.
- 55. CIMA Cellulose Insulation Manufacturers Association; www.cellulose.org.
- 56. CISCA Ceilings & Interior Systems Construction Association; www.cisca.org.
- 57. CISPI Cast Iron Soil Pipe Institute; www.cispi.org.
- 58. CLFMI Chain Link Fence Manufacturers Institute; www.chainlinkinfo.org.
- 59. CPA Composite Panel Association; www.pbmdf.com.
- 60. CRI Carpet and Rug Institute (The); www.carpet-rug.org.
- 61. CRRC Cool Roof Rating Council; www.coolroofs.org.
- 62. CRSI Concrete Reinforcing Steel Institute; www.crsi.org.
- 63. CSA Canadian Standards Association; www.csa.ca.
- 64. CSA CSA International; (Formerly: IAS International Approval Services); www.csa-international.org.
- 65. CSI Construction Specifications Institute (The); www.csinet.org.

- 66. CSSB Cedar Shake & Shingle Bureau; www.cedarbureau.org.
- 67. CTI Cooling Technology Institute; (Formerly: Cooling Tower Institute); www.cti.org.
- 68. CWC Composite Wood Council; (See CPA).
- 69. DASMA Door and Access Systems Manufacturers Association; www.dasma.com.
- 70. DHI Door and Hardware Institute; www.dhi.org.
- 71. ECA Electronic Components Association; (See ECIA).
- 72. ECAMA Electronic Components Assemblies & Materials Association; (See ECIA).
- 73. ECIA Electronic Components Industry Association; www.eciaonline.org.
- 74. EIA Electronic Industries Alliance; (See TIA).
- 75. EIMA EIFS Industry Members Association; <u>www.eima.com</u>.
- 76. EJMA Expansion Joint Manufacturers Association, Inc.; www.ejma.org.
- 77. ESD ESD Association; (Electrostatic Discharge Association); www.esda.org.
- 78. ESTA Entertainment Services and Technology Association; (See PLASA).
- 79. EVO Efficiency Valuation Organization; www.evo-world.org.
- 80. FCI Fluid Controls Institute; www.fluidcontrolsinstitute.org.
- 81. FIBA Federation Internationale de Basketball; (The International Basketball Federation); www.fiba.com.
- 82. FIVB Federation Internationale de Volleyball; (The International Volleyball Federation); www.fivb.org.
- 83. FM Approvals FM Approvals LLC; <u>www.fmglobal.com</u>.
- 84. FM Global FM Global; (Formerly: FMG FM Global); www.fmglobal.com.
- 85. FRSA Florida Roofing, Sheet Metal & Air Conditioning Contractors Association, Inc.; www.floridaroof.com.
- 86. FSA Fluid Sealing Association; www.fluidsealing.com.
- 87. FSC Forest Stewardship Council U.S.; www.fscus.org.
- 88. GA Gypsum Association; www.gypsum.org.
- 89. GANA Glass Association of North America; www.glasswebsite.com.
- 90. GS Green Seal; www.greenseal.org.
- 91. HI Hydraulic Institute; www.pumps.org.
- 92. HI/GAMA Hydronics Institute/Gas Appliance Manufacturers Association; (See AHRI).
- 93. HMMA Hollow Metal Manufacturers Association; (See NAAMM).
- 94. HPVA Hardwood Plywood & Veneer Association; www.hpva.org.
- 95. HPW H. P. White Laboratory, Inc.; www.hpwhite.com.
- 96. IAPSC International Association of Professional Security Consultants; www.iapsc.org.
- 97. IAS International Accreditation Service; www.iasonline.org.
- 98. IAS International Approval Services; (See CSA).
- ICBO International Conference of Building Officials; (See ICC).
- 100. ICC International Code Council; www.iccsafe.org.
- 101. ICEA Insulated Cable Engineers Association, Inc.; www.icea.net.
- 102. ICPA International Cast Polymer Alliance; www.icpa-hq.org.
- 103. ICRI International Concrete Repair Institute, Inc.; www.icri.org.
- 104. IEC International Electrotechnical Commission; www.iec.ch.
- 105. IEEE Institute of Electrical and Electronics Engineers, Inc. (The); www.ieee.org.
- 106. IES Illuminating Engineering Society; (Formerly: Illuminating Engineering Society of North America); www.ies.org.
- 107. IESNA Illuminating Engineering Society of North America; (See IES).

- 108. IEST Institute of Environmental Sciences and Technology; www.iest.org.
- 109. IGMA Insulating Glass Manufacturers Alliance; www.igmaonline.org.
- 110. IGSHPA International Ground Source Heat Pump Association; www.igshpa.okstate.edu.
- 111. ILI Indiana Limestone Institute of America, Inc.; www.iliai.com.
- 112. Intertek Intertek Group; (Formerly: ETL SEMCO; Intertek Testing Service NA); www.intertek.com.
- 113. ISA International Society of Automation (The); (Formerly: Instrumentation, Systems, and Automation Society); www.isa.org.
- 114. ISAS Instrumentation, Systems, and Automation Society (The); (See ISA).
- 115. ISFA International Surface Fabricators Association; (Formerly: International Solid Surface Fabricators Association); www.isfanow.org.
- 116. ISO International Organization for Standardization; www.iso.org.
- 117. ISSFA International Solid Surface Fabricators Association; (See ISFA).
- 118. ITU International Telecommunication Union; www.itu.int/home.
- 119. KCMA Kitchen Cabinet Manufacturers Association; www.kcma.org.
- 120. LMA Laminating Materials Association; (See CPA).
- 121. LPI Lightning Protection Institute; www.lightning.org.
- 122. MBMA Metal Building Manufacturers Association; www.mbma.com.
- 123. MCA Metal Construction Association; www.metalconstruction.org.
- 124. MFMA Maple Flooring Manufacturers Association, Inc.; www.maplefloor.org.
- 125. MFMA Metal Framing Manufacturers Association, Inc.; www.metalframingmfg.org.
- 126. MHIA Material Handling Industry of America; www.mhia.org.
- 127. MIA Marble Institute of America; www.marble-institute.com.
- 128. MMPA Moulding & Millwork Producers Association; www.wmmpa.com.
- 129. MPI Master Painters Institute; www.paintinfo.com.
- 130. MSS Manufacturers Standardization Society of The Valve and Fittings Industry Inc.; www.mss-hq.org.
- 131. NAAMM National Association of Architectural Metal Manufacturers; www.naamm.org.
- 132. NACE NACE International; (National Association of Corrosion Engineers International); www.nace.org.
- 133. NADCA National Air Duct Cleaners Association; www.nadca.com.
- 134. NAIMA North American Insulation Manufacturers Association; www.naima.org.
- 135. NBGQA National Building Granite Quarries Association, Inc.; www.nbgqa.com.
- 136. NBI New Buildings Institute; www.newbuildings.org.
- 137. NCAA National Collegiate Athletic Association (The); www.ncaa.org.
- 138. NCMA National Concrete Masonry Association; www.ncma.org.
- 139. NEBB National Environmental Balancing Bureau; www.nebb.org.
- 140. NECA National Electrical Contractors Association; www.necanet.org.
- 141. NeLMA Northeastern Lumber Manufacturers Association; www.nelma.org.
- 142. NEMA National Electrical Manufacturers Association; www.nema.org.
- 143. NETA InterNational Electrical Testing Association; www.netaworld.org.
- 144. NFHS National Federation of State High School Associations; www.nfhs.org.
- 145. NFPA National Fire Protection Association; www.nfpa.org.
- 146. NFPA NFPA International; (See NFPA).
- 147. NFRC National Fenestration Rating Council; www.nfrc.org.
- 148. NHLA National Hardwood Lumber Association; www.nhla.com.
- 149. NLGA National Lumber Grades Authority; www.nlga.org.
- 150. NOFMA National Oak Flooring Manufacturers Association; (See NWFA).

- 151. NOMMA National Ornamental & Miscellaneous Metals Association; www.nomma.org.
- 152. NRCA National Roofing Contractors Association; www.nrca.net.
- 153. NRMCA National Ready Mixed Concrete Association; www.nrmca.org.
- 154. NSF NSF International; www.nsf.org.
- 155. NSPE National Society of Professional Engineers; www.nspe.org.
- 156. NSSGA National Stone, Sand & Gravel Association; www.nssga.org.
- 157. NTMA National Terrazzo & Mosaic Association, Inc. (The); www.ntma.com.
- 158. NWFA National Wood Flooring Association; www.nwfa.org.
- 159. PCI Precast/Prestressed Concrete Institute; www.pci.org.
- 160. PDI Plumbing & Drainage Institute; www.pdionline.org.
- 161. PLASA PLASA; (Formerly: ESTA Entertainment Services and Technology Association); www.plasa.org.
- 162. RCSC Research Council on Structural Connections; www.boltcouncil.org.
- 163. RFCI Resilient Floor Covering Institute; www.rfci.com.
- 164. RIS Redwood Inspection Service; <u>www.redwoodinspection.com</u>.
- 165. SAE SAE International; www.sae.org.
- 166. SCTE Society of Cable Telecommunications Engineers; www.scte.org.
- 167. SDI Steel Deck Institute; www.sdi.org.
- 168. SDI Steel Door Institute; www.steeldoor.org.
- 169. SEFA Scientific Equipment and Furniture Association (The); www.sefalabs.com.
- 170. SEI/ASCE Structural Engineering Institute/American Society of Civil Engineers; (See ASCE).
- 171. SIA Security Industry Association; www.siaonline.org.
- 172. SJI Steel Joist Institute; www.steeljoist.org.
- 173. SMA Screen Manufacturers Association; www.smainfo.org.
- 174. SMACNA Sheet Metal and Air Conditioning Contractors' National Association; www.smacna.org.
- 175. SMPTE Society of Motion Picture and Television Engineers; www.smpte.org.
- 176. SPFA Spray Polyurethane Foam Alliance; <u>www.sprayfoam.org</u>.
- 177. SPIB Southern Pine Inspection Bureau; www.spib.org.
- 178. SPRI Single Ply Roofing Industry; www.spri.org.
- 179. SRCC Solar Rating & Certification Corporation; www.solar-rating.org.
- 180. SSINA Specialty Steel Industry of North America; www.ssina.com.
- 181. SSPC SSPC: The Society for Protective Coatings; www.sspc.org.
- 182. STI Steel Tank Institute; www.steeltank.com.
- 183. SWI Steel Window Institute; www.steelwindows.com.
- 184. SWPA Submersible Wastewater Pump Association; www.swpa.org.
- 185. TCA Tilt-Up Concrete Association; www.tilt-up.org.
- 186. TCNA Tile Council of North America, Inc.; www.tileusa.com.
- 187. TEMA Tubular Exchanger Manufacturers Association, Inc.; www.tema.org.
- 188. TIA Telecommunications Industry Association (The); (Formerly: TIA/EIA Telecommunications Industry Association/Electronic Industries Alliance); www.tiaonline.org.
- 189. TIA/EIA Telecommunications Industry Association/Electronic Industries Alliance; (See TIA).
- 190. TMS The Masonry Society; www.masonrysociety.org.
- 191. TPI Truss Plate Institute; www.tpinst.org.
- 192. TPI Turfgrass Producers International; www.turfgrasssod.org.
- 193. TRI Tile Roofing Institute; www.tileroofing.org.

- 194. UL Underwriters Laboratories Inc.; www.ul.com.
- 195. UNI Uni-Bell PVC Pipe Association; www.uni-bell.org.
- 196. USAV USA Volleyball; www.usavolleyball.org.
- 197. USGBC U.S. Green Building Council; www.usgbc.org.
- 198. USITT United States Institute for Theatre Technology, Inc.; www.usitt.org.
- 199. WASTEC Waste Equipment Technology Association; www.wastec.org.
- 200. WCLIB West Coast Lumber Inspection Bureau; www.wclib.org.
- 201. WCMA Window Covering Manufacturers Association; www.wcmanet.org.
- 202. WDMA Window & Door Manufacturers Association; www.wdma.com.
- 203. WI Woodwork Institute; www.wicnet.org.
- 204. WSRCA Western States Roofing Contractors Association; www.wsrca.com.
- 205. WWPA Western Wood Products Association; www.wwpa.org.
- B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is believed to be accurate as of the date of the Contract Documents.
 - 1. DIN Deutsches Institut fur Normung e.V.; www.din.de.
 - 2. IAPMO International Association of Plumbing and Mechanical Officials; www.iapmo.org.
 - 3. ICC International Code Council; www.iccsafe.org.
 - 4. ICC-ES ICC Evaluation Service, LLC; <u>www.icc-es.org</u>.
- C. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Information is subject to change and is up to date as of the date of the Contract Documents.
 - 1. COE Army Corps of Engineers; www.usace.army.mil.
 - 2. CPSC Consumer Product Safety Commission; www.cpsc.gov.
 - 3. DOC Department of Commerce; National Institute of Standards and Technology; www.nist.gov.
 - 4. DOD Department of Defense; www.quicksearch.dla.mil.
 - 5. DOE Department of Energy; www.energy.gov.
 - 6. EPA Environmental Protection Agency; <u>www.epa.gov</u>.
 - 7. FAA Federal Aviation Administration; www.faa.gov.
 - 8. FG Federal Government Publications; www.gpo.gov.
 - 9. GSA General Services Administration; www.gsa.gov.
 - 10. HUD Department of Housing and Urban Development; www.hud.gov.
 - 11. LBL Lawrence Berkeley National Laboratory; Environmental Energy Technologies Division; www.eetd.lbl.gov.
 - 12. OSHA Occupational Safety & Health Administration; www.osha.gov.
 - 13. SD Department of State; www.state.gov.
 - 14. TRB Transportation Research Board; National Cooperative Highway Research Program; The National Academies; www.trb.org.
 - 15. USDA Department of Agriculture; Agriculture Research Service; U.S. Salinity Laboratory; www.ars.usda.gov.
 - 16. USDA Department of Agriculture; Rural Utilities Service; www.usda.gov.
 - 17. USDJ Department of Justice; Office of Justice Programs; National Institute of Justice; www.ojp.usdoj.gov.

- 18. USP U.S. Pharmacopeial Convention; www.usp.org.
- 19. USPS United States Postal Service; www.usps.com.
- D. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
 - 1. CFR Code of Federal Regulations; Available from Government Printing Office; www.gpo.gov/fdsys.
 - 2. DOD Department of Defense; Military Specifications and Standards; Available from DLA Document Services; www.quicksearch.dla.mil.
 - 3. DSCC Defense Supply Center Columbus; (See FS).
 - FED-STD Federal Standard; (See FS).
 - 5. FS Federal Specification; Available from DLA Document Services; www.quicksearch.dla.mil.
 - a. Available from Defense Standardization Program; www.dsp.dla.mil.
 - b. Available from General Services Administration; www.gsa.gov.
 - c. Available from National Institute of Building Sciences/Whole Building Design Guide; www.wbdg.org/ccb.
 - 6. MILSPEC Military Specification and Standards; (See DOD).
 - 7. USAB United States Access Board; www.access-board.gov.
 - 8. USATBCB U.S. Architectural & Transportation Barriers Compliance Board; (See USAB).
- E. State Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
 - 1. CBHF; State of California; Department of Consumer Affairs; Bureau of Electronic and Appliance Repair, Home Furnishings and Thermal Insulation; www.bearhfti.ca.gov.
 - 2. CCR; California Code of Regulations; Office of Administrative Law; California Title 24 Energy Code; www.calregs.com.
 - 3. CDHS; California Department of Health Services; (See CDPH).
 - 4. CDPH; California Department of Public Health; Indoor Air Quality Program; www.cal-iaq.org.
 - 5. CPUC; California Public Utilities Commission; www.cpuc.ca.gov.
 - 6. SCAQMD; South Coast Air Quality Management District; www.aqmd.gov.
 - 7. TFS; Texas A&M Forest Service; Sustainable Forestry and Economic Development; www.txforestservice.tamu.edu.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 015000 TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

B. Related Requirements:

- 1. Division 01 Section "Summary" for work restrictions and limitations on utility interruptions.
- 2. Division 01 Section "Fire Safety During Construction" for fire safety requirements during construction.
- 3. Division 31 Sections applicable to site clearing, earthwork, and trenching for temporary erosion and sedimentation control.

1.3 USE CHARGES

- A. General: Installation, removal, and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities to use temporary services and facilities without cost, including, but not limited to Owner, Architect, testing agencies, and authorities having jurisdiction.
- B. Water Service: Install temporary water service, including meter, and pay for use charges for water used by all entities for construction operations.
 - 1. Provide temporary water meter and pay use charges for water used by all entities for construction operations.
- C. Electric Power Service: Install temporary electric power service, including meter, and pay for use charges for electricity used by all entities for construction operations.
 - 1. Provide temporary electric power meter and pay electric-power-service use charges for electricity used by all entities for construction operations.

1.4 SUBMITTALS

A. Erosion and Sedimentation-Control Plan: Show compliance with requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.

1. Comply with submittal requirements of Division 31 Sections as applicable for temporary erosion and sedimentation control plans.

1.5 QUALITY ASSURANCE

- A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with CEC.
- B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

1.6 REGULATORY REQUIREMENTS

- A. Regulatory Requirements: Comply with industry standards and applicable laws and regulations of authorities having jurisdiction including, but not limited to, the following:
 - 1. California Code of Regulations, Title 24, California Code requirements as applicable to the project.
 - 2. Health and safety regulations.
 - 3. Utility company regulations.
 - 4. Police, fire department, and rescue squad rules.
 - 5. Environmental protection regulations.
 - 6. Comply with NFPA 241 "Standard for Safeguarding Construction, Alterations, and Demolition Operations," ANSI A10 Series standards for "Safety Requirements for Construction and Demolition," and NECA Electrical Design Library "Temporary Electrical Facilities."

1.7 PROJECT CONDITIONS

- A. Temporary Use of Permanent Facilities: Engage Installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.
- B. Conditions of Use: Keep temporary services and facilities clean and neat in appearance. Operate in a safe and efficient manner. Relocate temporary services and facilities as the Work progresses. Do not overload facilities or permit them to interfere with progress. Take necessary fire-prevention measures. Do not allow hazardous, dangerous, or unsanitary conditions, or public nuisances to develop or persist on-site.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Materials for temporary facilities shall be acceptable to Architect, Owner, and Authorities having Jurisdiction (AHJ), shall be appropriate for intended use, and shall comply with governing codes and regulations.
- B. Portable Chain-Link Fencing: Minimum 2-inch, 0.148-inch thick, galvanized-steel, chain-link fabric fencing; minimum 6 feet high with galvanized-steel pipe posts. Provide concrete or galvanized-steel bases for supporting posts.
- C. Fencing Windscreen: Polyester fabric scrim with grommets for attachment to chain link fence, size and color as acceptable to, or required by, authorities having jurisdiction.
- D. Polyethylene Sheet: Reinforced, fire-resistive sheet, 10-mil minimum thickness, with flame-spread rating of 15 or less per ASTM E 84 and passing NFPA 701 Test Method 2.

2.2 TEMPORARY FIELD OFFICE FACILITIES

- A. Field Offices, General: Prefabricated or mobile units having weatherproof exteriors, lockable doors and windows, and with serviceable finishes, temperature controls, and foundations adequate for normal loading.
- B. Contractor's Field Office: Of sufficient size to accommodate needs of Contractor, Owner, Architect, construction personnel office activities, and to accommodate Project meetings specified in other Division 01 Sections. Keep office clean and orderly. Furnish and equip offices as follows:
 - 1. Furniture necessary for use and storage of Project documents including file cabinets, plan tables, plan racks, and bookcases.
 - 2. Conference room or area of sufficient size to accommodate meetings of 10 individuals; furnish with conference table, chairs, and 4-foot square tack and marker boards.
 - 3. Electrical power service, 120-VAC, with no fewer than one duplex receptacle on each wall.
 - 4. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 78 deg F.
 - 5. Lighting fixtures capable of maintaining average illumination of 20 fc at desk height.
 - 6. Communication Service and Equipment: Equip field office with phone and internet services and equipment adequate for project conditions and for use by Contractor, Architect, and Owner to access Project electronic documents and maintain electronic communications.
 - a. Provide superintendent with cellular telephone or portable two-way radio for use when away from field office.
 - b. Equip office with not less than the following:

- 1) Desktop computer with capabilities compatible with Architect's requirements. Provide external hard drive backup.
- 2) Printer/Copier/Scanner: Single or multiple units as needed to accommodate color printing, photocopying, and scanning.
- C. Inspector of Record Field Office: Contractor shall provide temporary office facilities for the Owner's Inspector of Record (IOR). Temporary facilities shall be of sufficient size to accommodate the needs of the IOR and associated project records. IOR facilities shall be provided with its own lockable exterior access, if interconnected with Contractor's facilities, a lockable door, controlled from the IOR side, shall be provided between the spaces. Furnish and equip office as follows:
 - 1. Plan/layout table, 30 by 72 inches minimum.
 - 2. File cabinets having a total capacity of not less than eight (8) legal size file drawers.
 - 3. Open shelving/book case, 48 inches minimum in total shelving width.
 - 4. Desk and Chair.
 - Plan rack.
 - 6. Internet service.
 - 7. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 78 deg F.
 - 8. Lighting fixtures capable of maintaining average illumination of 20 fc at desk height.

2.3 TEMPORARY STORAGE FACILITIES

- A. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations.
 - 1. Store combustible materials apart from buildings.

2.4 TEMPORARY SANITARY FACILITIES

- A. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use by construction and related administrative personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities. Temporary toilets shall be self-contained, single-occupant units of the chemical, aerated recirculation type; provide units properly vented and fully enclosed with a glass-fiber-reinforced polyester shell or similar nonabsorbent material. Use of Owner's sanitary facilities is not permitted.
 - 1. Accessible Sanitary Facilities: Sanitary facilities serving support facilities such as offices, meeting rooms, plan rooms, and serving personnel not directly associated with the actual processes of construction shall be accessible for a person using a wheelchair and shall comply with CBC Section 11B-213 (Ref. CBC 11B-201.4).

2.5 EQUIPMENT

- A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.
 - 1. Comply with NFPA 10 and NFPA 241 for classification, extinguishing agent, and size required by location and class of fire exposure.
- B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas heaters with individual space thermostatic control.
 - 1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.
 - 2. Heating Units: Listed and labeled for type of fuel being consumed, by a qualified testing agency acceptable to authorities having jurisdiction, and marked for intended location and application.
 - 3. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filter with MERV of 8 at each return-air grille in system and remove at end of construction and clean HVAC system as required in Division 01 Section "Closeout Procedures."

PART 3 - EXECUTION

3.1 TEMPORARY FACILITIES, GENERAL

A. Conservation: Coordinate construction and use of temporary facilities with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.

3.2 INSTALLATION, GENERAL

- A. Locate facilities at locations directed by the Owner where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.
- B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.3 TEMPORARY UTILITIES AND BUILDING HVAC

- A. General: Install temporary service or connect to existing service.
 - 1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.
- B. Sewers and Drainage: Provide temporary utilities to remove effluent lawfully.

- 1. Connect temporary sewers to private or municipal system as indicated on Drawings and as directed by authorities having jurisdiction.
- C. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction
 - 1. Existing Water Service: Where connection to Owner's existing water service is available and allowed, clean and maintain water service facilities in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.
- D. Heating and Cooling: Provide temporary heating and cooling required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.
 - Provide temporary dehumidification systems when required to reduce ambient and substrate moisture levels to level required to allow installation or application of finishes and their proper curing or drying.
- E. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.
 - 1. Prior to commencing work, isolate the HVAC system in area where work is to be performed according to coordination drawings.
 - a. Disconnect supply and return ductwork in work area from HVAC systems servicing occupied areas.
 - b. Maintain negative air pressure within work area using HEPA-equipped airfiltration units, starting with commencement of temporary partition construction, and continuing until removal of temporary partitions is complete.
 - 2. Maintain dust partitions during the Work. Use vacuum collection attachments on dust-producing equipment. Isolate limited work within occupied areas using portable dust-containment devices.
 - 3. Perform daily construction cleanup and final cleanup using approved, HEPA-filter-equipped vacuum equipment.
- F. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption.
 - 1. Provide dehumidification systems when required to reduce substrate moisture levels to level required to allow installation or application of finishes.
- G. Electric Power Service: Provide electric power service and distribution system of

sufficient size, capacity, and power characteristics required for construction operations.

- 1. Where temporary power service is required, install electric power service overhead unless otherwise indicated.
- 2. Where Owner's existing power service is available, connect temporary service to Owner's existing power source, as directed by Owner, maintain equipment in a condition acceptable to Owner.
- H. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.
 - 1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.
- I. Telephone Service: Provide temporary telephone service of sufficient size, capacity, and power characteristics required for construction operations in common-use facilities for use by all construction personnel. Install WiFi cell phone access equipment for each field office.
 - 1. Post a list of important telephone numbers at a conspicuous location, include the following:
 - Police and fire departments.
 - b. Ambulance service.
 - c. Contractor's home office.
 - d. Contractor's emergency after-hours telephone number.
 - e. Architect's office.
 - f. Engineers' offices.
 - g. Owner's office.
 - h. Principal subcontractors' field and home offices.

3.4 SUPPORT FACILITIES INSTALLATION

- A. General: Locate storage containers, and other temporary construction and support facilities for easy access in the areas designated and approved by the Architect and Owner. Comply with the following:
 - 1. Do not locate temporary offices, shops, and sheds within 30 feet of building lines.
 - 2. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.
- B. Traffic Controls: Comply with requirements of authorities having jurisdiction.
 - 1. Protect existing site improvements to remain including curbs, pavement, and utilities.
 - 2. Maintain access for fire-fighting equipment and access to fire hydrants.

- C. Parking: Parking areas for construction personnel shall be at location(s) as directed by Owner.
- D. Dewatering: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water.
 - 1. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties or endanger permanent Work or temporary facilities.
- E. Project Signs: Provide Project signs as indicated. Unauthorized signs are not permitted.
 - 1. Identification Signs: Provide Project identification signs as indicated on Drawings.
 - 2. Project Address Sign: Provide temporary project address sign as required by Authority having Jurisdiction.
 - 3. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project.
 - a. Provide temporary, directional signs for construction personnel and visitors.
 - 4. Maintain and touchup signs so they are legible at all times.
- F. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations.
 - 1. Comply with requirements of the following:
 - a. Authorities having jurisdiction.
 - b. Division 01 Section "Execution" for progress cleaning.
 - c. Division 01 Section "Construction Waste Management and Disposal."
 - 2. Collect waste from construction areas and elsewhere daily. Comply with requirements of NFPA 241 for removal of combustible waste material and debris. Enforce requirements strictly. Do not hold materials more than 7 days during normal weather or 3 days when the temperature is expected to rise above 80 deg F. Handle hazardous, dangerous, or unsanitary waste materials separately from other waste by containerizing properly. Dispose of material lawfully.
- G. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 - 1. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.
- H. Temporary Roads and Paved Areas: Construct and maintain temporary roads and paved areas adequate for construction operations. Locate temporary roads and paved areas within construction limits indicated on Drawings.
 - 1. Provide dust-control treatment that is non-polluting and non-tracking. Reapply treatment as required to minimize dust.

- I. Temporary Use of Permanent Roads and Paved Areas: Locate temporary roads and paved areas in same location as permanent roads and paved areas. Construct and maintain temporary roads and paved areas adequate for construction operations. Extend temporary roads and paved areas, within construction limits indicated, as necessary for construction operations.
 - 1. Coordinate elevations of temporary roads and paved areas with permanent roads and paved areas.
 - 2. Prepare subgrade and install subbase and base for temporary roads and paved areas according to Division 31 Section "Earth Moving."
 - 3. Recondition base after temporary use, including removing contaminated material, regrading, proof-rolling, compacting, and testing.
 - 4. Delay installation of final course of permanent hot-mix asphalt pavement until immediately before Substantial Completion. Repair hot-mix asphalt base-course pavement before installation of final course according to Division 32 Section "Asphalt Paving."

3.5 SECURITY AND PROTECTION FACILITIES INSTALLATION

- A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.
- B. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.
 - 1. Comply with work restrictions specified in Division 01 Section "Summary."
- C. Temporary Erosion and Sedimentation Control: Provide measures to prevent soil erosion and discharge of soil-bearing water runoff and airborne dust to undisturbed areas and to adjacent properties and walkways, according to requirements erosion and sedimentationcontrol Drawings, EPA Construction General Permit, or authorities having jurisdiction, whichever is more stringent.
 - 1. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross tree or plant- protection zones.
 - 2. Inspect, repair, and maintain erosion and sedimentation-control measures during construction until permanent vegetation has been established.
 - 3. Clean, repair, and restore adjoining properties and roads affected by erosion and sedimentation from Project site during the course of Project.
 - 4. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.
- D. Stormwater Control: Comply with requirements of authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains.
- E. Tree and Plant Protection: Install temporary fencing located as indicated or outside the

- drip line of trees to protect vegetation from damage from construction operations. Protect tree root systems from damage, flooding, and erosion.
- F. Pest Control: Engage pest-control service to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests and to perform extermination and control procedures at regular intervals so Project will be free of pests and their residues at Substantial Completion. Perform control operations lawfully, using environmentally safe materials.
- G. Security Enclosure Fence and Lockup: Before construction operations begin, furnish and install project enclosure fence in a manner that will prevent people and animals from easily entering the site except by entrance gates. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each work day.
 - 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations.
- H. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.
- I. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.
- J. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior.
 - 1. Where heating or cooling is needed and permanent enclosure is incomplete, insulate temporary enclosures.
- K. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire-prevention program.
 - 1. Prohibit smoking in construction areas. Comply with additional limits on smoking specified in other Sections.
 - 2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
 - 3. Develop and supervise an overall fire-prevention and protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.

3.6 MOISTURE AND MOLD CONTROL

A. General: Avoid trapping water in finished work. Document visible signs of mold that may appear during construction.

- B. Exposed Construction Phase: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect as follows:
 - 1. Protect porous materials from water damage.
 - 2. Protect stored and installed material from flowing or standing water.
 - 3. Keep porous and organic materials from coming into prolonged contact with concrete.
 - 4. Remove standing water from decks.
 - 5. Keep deck openings covered or dammed.
- C. Partially Enclosed Construction Phase: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:
 - 1. Do not load or install drywall or other porous materials or components, or items with high organic content, into partially enclosed building.
 - 2. Keep interior spaces reasonably clean and protected from water damage.
 - 3. Periodically collect and remove waste containing cellulose or other organic matter.
 - 4. Discard or replace water-damaged material.
 - 5. Do not install material that is wet.
 - 6. Discard, replace, or clean stored or installed material that begins to grow mold.
 - 7. Perform work in a sequence that allows any wet materials adequate time to dry before enclosing the material in drywall or other interior finishes.
- D. Controlled Construction Phase of Construction: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:
 - 1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
 - 2. Use temporary or permanent HVAC system to control humidity within ranges specified for installed and stored materials.
 - 3. Comply with manufacturer's written instructions for temperature, relative humidity, and exposure to water limits.
 - a. Hygroscopic materials that may support mold growth, including wood and gypsum-based products, that become wet during the course of construction and remain wet for 48 hours are considered defective and require replacing.
 - b. Measure moisture content of materials that have been exposed to moisture during construction operations or after installation. Record readings beginning at time of exposure and continuing daily for 48hours. Identify materials containing moisture levels higher than allowed. Report findings in writing to Architect.
 - c. Remove materials that cannot be completely restored to their manufactured moisture level within 48hours.

3.7 OPERATION, TERMINATION, AND REMOVAL

- A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.
- B. Maintenance: Maintain facilities in good operating condition until removal.
 - Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.
- C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.
- D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 - 1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
 - 2. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Division 01 Section "Closeout Procedures."

END OF SECTION

SECTION 015116 FIRE SAFETY DURING CONSTRUCTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes requirements for fire safety during construction and demolition.
- B. Related Sections:
 - 1. Division 01 Section "Temporary Facilities and Controls" for additional facilities, requirements, and procedures required during construction.

1.3 SUBMITTALS

A. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire-prevention program.

1.4 REGULATORY REQUIREMENTS

- A. Regulatory Requirements: Comply with applicable provisions of the following:
 - 1. NFPA 241.
 - 2. California Fire Code, 2022 Edition, Chapter 33 "Fire Safety During Construction and Demolition" and the 2022 Editions of the following California Codes as Referenced by the California Fire Code:
 - a. California Building Code (CBC).
 - b. California Mechanical Code (CMC).
 - c. California Plumbing Code (CPC).
 - d. California Electrical Code (CEC).

B. Temporary Heating Equipment (CFC 3303):

- 1. General: Temporary heating devices shall be listed and labeled in accordance with the California Mechanical Code. Installation, maintenance and use of temporary heating devices shall be in accordance with the terms of the listing.
- 2. LP-Gas heaters: Heating devices shall be temporary, self-contained, liquid-propane-gas heaters with individual space thermostatic control. Fuel supplies for

- liquefied petroleum gas fired heaters shall comply with the California Fire Code, Chapter 61 Liquefied Petroleum Gases, and the California Mechanical Code.
- 3. Refueling: Refueling operations for liquid fueled equipment or appliances shall be conducted in accordance with the California Fire Code, Section 5705. The equipment or appliance shall be allowed to cool prior to refueling.
- 4. Installation: Clearance to combustibles from temporary heating devices shall be maintained in accordance with the labeled equipment. When in operation, temporary heating devices shall be fixed in place and protected from damage, dislodgement or overturning in accordance with the manufacturer's instructions.
- 5. Supervision: The use of temporary heating devices shall be supervised and maintained only by competent personnel.
- 6. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.

C. Precautions Against Fire (CFC 3304):

- 1. Smoking: Smoking shall not be allowed on the project site.
- 2. Combustible Debris, Rubbish and Waste:
 - a. Combustible debris, rubbish and waste shall not be accumulated within buildings.
 - b. Combustible debris, rubbish and waste material shall be removed from buildings at the end of each shift of work.
 - c. Rubbish containers with a capacity exceeding 5.33 cubic feet (40 gallons) used for temporary storage of combustible debris, rubbish and waste materials, shall have tight fitting or self-closing lids. Such containers shall be constructed entirely of materials that are non-combustible or materials that meet a peak rate of heat release not exceeding 300 kW/m² when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m² in the horizontal orientation.
 - d. Materials susceptible to spontaneous ignition, such as oily rags, shall be stored in a listed disposal container.
- 3. Burning: Burning of materials shall not be allowed on the project site.
- 4. Fire Watch: Where required by the fire code official, a fire watch shall be provided for building demolition and for building construction during working hours that is hazardous in nature, such as temporary heating or hot work.
 - a. Trained personnel shall be provided to serve as an on-site fire watch. Fire watch personnel shall be provided with not less than one approved means for notification of the fire department, and the sole duty of such personnel shall be to perform constant patrols and watch for the occurrence of fire. The combination of fire watch duties and site security is acceptable. Fire watch personnel shall be trained in the use of portable fire extinguishers.
 - b. The fire watch personnel shall keep a record of all time periods of duty, including a log entry each time the site was patrolled, and each time a structure under construction was entered and inspected. The records and log entries shall be made available for review by the fire code official upon request.
- 5. Cutting and Welding: Welding, cutting, open torches, and other hot work operations and equipment shall comply with California Fire Code, Chapter 35

- "Welding and Other Hot Work."
- 6. Temporary Wiring for Electrical Power: Temporary wiring for electrical power and lighting installations used in connection with the construction, alteration or demolition of buildings, structures, equipment or similar activities shall comply with the California Electrical Code.

D. Flammable and Combustible Liquids (CFC 3305):

- 1. Storage of Flammable and Combustible Liquids: Storage of flammable and combustible liquids shall be in accordance with the California Fire Code, Section 5704
- 2. Class I and Class II Liquids: Storage, use, and handling of flammable and combustible liquids at construction sites shall be in accordance with the California Fire Code, Section 5706.2. Ventilation shall be provided for operations involving the application of materials containing flammable solvents.
- 3. Housekeeping: Flammable and combustible liquid storage areas shall be maintained clear of combustible vegetation and waste materials. Such storage areas shall not be used for the storage of combustible materials.
- 4. Precautions Against Fire: Sources of ignition and smoking shall be prohibited in flammable and combustible liquid storage areas. Signs shall be posted in accordance the California Fire Code, Section 310.
- 5. Handling at Point of Final Use: Class I and Class II liquids shall be kept in approved safety containers.
- 6. Leakage and Spills: Leaking vessels shall be immediately repaired or taken out of service and spills shall be cleaned up and disposed of properly.

E. Flammable Gases (CFC 3306):

- 1. Storage and Handling: Storage and handling of flammable gasses shall comply with the California Fire Code, Chapter 58 "Flammable Gases and Flammable Cryogenic Fluids."
- 2. Cleaning with Flammable Gases: Flammable gases shall not be used to clean or remove debris from piping open to the atmosphere.
- F. Explosive Materials (CFC 3307): Explosive materials shall not be allowed.
- G. Owner's Responsibility for Fire Protection (CFC 3308)
 - 1. Program Development: The Contractor shall be responsible for the development, implementation and maintenance of a written plan establishing a fire prevention program at the project site applicable throughout all phases of the construction.
 - 2. Program Superintendent: The Contractor shall a person to be the Fire Prevention Program Superintendent who shall be responsible for the fire prevention program and ensure that it is carried out through completion of the project. The fire prevention program superintendent shall have the authority to enforce the provisions of the California Fire Code, Chapter 33, and other provisions as necessary to secure the intent of the California Fire Code, Chapter 33. Where guard service is provided in accordance with NFPA 241, the superintendent shall be responsible for the guard service.
 - 3. Prefire Plans: The fire prevention program superintendent shall develop and maintain an approved prefire plan in cooperation with the fire chief. The fire chief

- and the fire code official shall be notified of changes affecting the utilization of information contained in such prefire plans.
- 4. Training: Training of responsible personnel in the use of fire protection equipment shall be the responsibility of the fire prevention program superintendent. Records of training shall be kept and made a part of the written plan for the fire prevention program.
- 5. Fire Protection Devices: The fire prevention program superintendent shall determine that all fire protection equipment is maintained and serviced in accordance with the California Fire Code. The quantity and type of fire protection equipment shall be approved. Fire protection equipment shall be inspected in accordance with the fire prevention program.
- 6. Hot Work Operations: The fire prevention program superintendent shall be responsible for supervising the permit system for hot work operations in accordance with the California Fire Code, Chapter 35.
- 7. Impairment of Fire Protection Systems: Impairments to any fire protection system shall be in accordance with the California Fire Code, Section 901.
 - a. Smoke detectors and smoke alarms located in an area where airborne construction dust is expected shall be covered to prevent exposure to dust or shall be temporarily removed. smoke detectors and alarms that were removed shall be replaced upon conclusion of dust producing work. Smoke detectors and smoke alarms that were covered shall be inspected and cleaned, as necessary, upon conclusion of dust producing work.
- 8. Temporary Covering of Fire Protection Devices: Temporary coverings placed on or over fire protection devices to protect them from damage during construction processes shall be immediately removed upon the completion of the construction processes in the room or area in which the devices are installed.

H. Fire Reporting (CFC 3309)

1. Emergency Telephone: Emergency telephone facilities with ready access shall be provided in an approved location at the construction site, or an approved equivalent means of communication shall be provided. The street address of the construction site and the emergency telephone number of the fire department shall be posted adjacent to the telephone. Alternatively, where an equivalent means of communication has been approved, the site address and fire department emergency telephone number shall be posted at the main entrance to the site, in guard shacks, and in the construction site office.

I. Access for Fire Fighting (CFC 3310):

- Required Access: Approved vehicle access for firefighting shall be provided to all
 construction or demolition sites. Vehicle access shall be provided to within 100
 feet of temporary or permanent fire department connections. Vehicle access shall
 be provided by either temporary or permanent roads capable of supporting vehicle
 loading under all weather conditions. Vehicle access shall be maintained until
 permanent fire apparatus access roads are available.
- 2. Key Boxes: Key boxes shall be provided as required by the California Fire Code, Chapter 5 "Fire Service Features."

J. Means of Egress (CFC 3311):

- 1. Stairways Required: (Requirements not applicable to buildings less than 50 feet in height or less than four stories).
- Means of Egress: Required means of egress and required accessible means of egress shall be maintained during construction and demolition, remodeling or alterations and additions to any building unless an approved temporary means of egress system is provided.

K. Water Supply for Fire Protection (CFC 3312):

1. Water Supply for Fire Protection: An approved water supply for fire protection, either temporary or permanent, shall be made available as soon as combustible material arrives on site.

L. Standpipes (CFC 3313):

- 1. Where Required: In buildings required to have standpipes by California Fire Code Section 905.3.1, not less than one standpipe shall be provided for use during construction. Such standpipes shall be installed prior to construction exceeding 40 feet in height above the lowest level of fire department vehicle access. Such standpipes shall be provided with fire department hose connections at locations adjacent to stairways complying with California Fire Code Section 3311.11. As construction progresses, such standpipes shall be extended to within one floor of the highest point of construction having secured decking or flooring.
- 2. Buildings Being Demolished: Where a building is being demolished and a standpipe is existing within such a building, such standpipe shall be maintained in an operable condition so as to be available for use by the fire department. Such standpipe shall be demolished with the building but shall not be demolished more than one floor below the floor being demolished.
- 3. Detailed Requirements: Standpipes shall be installed in accordance with the provisions of California Fire Code Section 905.
 - a. Standpipes shall be either temporary or permanent in nature, and with or without a water supply, provided that such standpipes comply with the requirements of California Fire Code Section 905 as to capacity, outlets and materials.

M. Automatic Sprinkler System (CFC 3314):

- Completion Before Occupancy: In buildings where an automatic sprinkler system
 is required by the California Fire Code or California Building Code, it shall be
 unlawful to occupy any portion of a building or structure until the automatic
 sprinkler system installation has been tested and approved, except as provided in
 California Fire Code Section 105.3.4.
- 2. Operation of Valves: In buildings where an automatic sprinkler system is provided, operation of sprinkler control valves shall be allowed only by properly authorized personnel and shall be accompanied by notification of duly designated parties. Where the sprinkler protection is being regularly turned off and on to facilitate connection of newly completed segments, the sprinkler control

valves shall be checked at the end of each work period to ascertain that protection is in service.

N. Portable Fire Extinguishers (CFC 3315):

- Portable Fire Extinguishers: Structures under construction, alteration or demolition shall be provided with not less than one approved portable fire extinguisher in accordance with the California Fire Code, Section 906 and sized for not less than ordinary hazard, as follows:
 - a. At each stairway on all floor levels where combustible materials have accumulated.
 - b. In every storage and construction shed.
 - c. Additional portable fire extinguishers shall be provided where special hazards exist including, but not limited to, the storage and use of flammable and combustible liquids.

O. Motorized Construction Equipment (CFC 3316):

- 1. Conditions of Use: Internal combustion powered construction equipment shall be used in accordance with all of the following conditions:
 - a. Equipment shall be located so that exhausts do not discharge against combustible material.
 - b. Exhausts shall be piped to the outside of the building.
 - c. Equipment shall not be refueled while in operation.
 - d. Fuel for equipment shall be stored in approved areas outside of the building.

P. Safeguarding Roofing Operations (CFC 3317):

- 1. General: Roofing operations utilizing heat producing systems or other ignition sources shall be conducted in accordance with California Fire Code Sections 3317.2 and 3317.3, and Chapter 35.
- 2. Asphalt and Tar Kettles: Asphalt and tar kettles shall be operated in accordance with the California Fire Code, Section 303.
- 3. Fire Extinguishers for Roofing Operations: Fire extinguishers shall comply with the California Fire Code, Section 906. There shall be not less than one multipurpose portable fire extinguisher with a minimum 3-A 40-B:C rating on the roof being covered or repaired.

PART 2 - PRODUCTS

2.1 TEMPORARY EQUIPMENT, GENERAL

A. Temporary Equipment: Temporary equipment shall comply with requirements of Division 01 Section "Temporary Facilities and Controls," and shall comply with the requirements of this Section.

PART 3 - EXECUTION

A. Fire Safety Observation, Procedures, and Features: Provide fire safety observation activities, procedures, and features as required and in compliance with regulatory requirements.

END OF SECTION

SECTION 016000 PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

B. Related Requirements:

1. Division 01 Section "Substitution Procedures" for requests for substitutions.

1.3 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, which is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Products: Products of a listed manufacturer that are demonstrated to meet or exceed the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified 'Basis of Design' product.
- B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.4 SUBMITTALS

A. Product Submittals: Comply with requirements in Division 01 Section "Submittal Procedures" and submittal requirements of Division 02 through 33 Sections to show compliance with product requirements.

1.5 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:

- 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
- 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
- 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
- 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:

- 1. Store products to allow for inspection and measurement of quantity or counting of units.
- 2. Store materials in a manner that will not endanger Project structure.
- 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
- 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
- 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
- 6. Protect stored products from damage and liquids from freezing.

1.7 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. See Divisions 02 through 33 Sections for specific content requirements and particular requirements for submitting special warranties.
- C. Warranty Submittals: Comply with requirements in Division 01 Section "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
 - 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
 - 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
 - 4. Where products are accompanied by the term "as selected," Architect will make selection.
 - 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.

B. Product Selection Procedures:

1. Restricted List: Where Specifications include the phrase "provide one of the following" or similar phrase and lists 2 or more manufacturers and/or products,

- provide one of the products indicated. Comply with requirements in Division 01 Section "Substitution Procedures" for consideration of an unnamed manufacturer or product.
- 2. Non-restricted List: Where Specifications include the phrase "includes, but are not limited to the following" or similar phrase, provide one of the products indicated or an unnamed product that complies with requirements indicated.
- 3. Basis of Design: Where Specifications include the phrase "Basis of Design" and lists a named manufacturer and product, provide the product indicated.
 - a. Where a "Comparable" product of listed manufacturers is indicated following a "Basis of Design" manufacturer/product, a comparable product of one of the listed manufacturers may be provided in lieu of the basis of design manufacturer/product subject to compliance with product requirements and the following:
 - 1) Evidence that the proposed product:
 - a) Does not require revisions to the Contract Documents.
 - b) Is consistent with the Contract Documents and will produce the indicated results.
 - c) Is compatible with other portions of the Work.
 - 2) Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 - 3) Evidence that proposed product provides specified warranty.
 - Where no "Comparable" manufacturers/products are indicated following a "Basis of Design" manufacturer/product, comply with requirements in Division 01 Section "Substitution Procedures" for consideration of an unnamed manufacturer or product.
- C. Visual Matching Specification: Where Specifications require "match Architect's sample", provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
 - 1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Division 01 Section "Substitution Procedures" for proposal of product.
- D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

PART 3 - EXECUTION

3.1 PRODUCT INSTALLATION

A. General: Install products in accordance with Drawings, Specifications, and product manufacturer's written installation instructions. Installation shall include examination of conditions and preparations necessary for proper installation.

END OF SECTION

SECTION 017300 EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Construction layout.
 - 2. Field engineering and surveying.
 - 3. Installation of the Work.
 - 4. Cutting, patching and repairing.
 - 5. Coordination of Owner-installed products.
 - 6. Progress cleaning.
 - 7. Starting and adjusting.
 - 8. Protection of installed construction.
 - 9. Correction of the Work.

B. Related Requirements:

- 1. Division 01 Section "Summary of Work" for limits on use of Project site.
- 2. Division 01 Section "Submittal Procedures" for submitting surveys.
- 3. Division 02 Section "Selective Demolition" for demolition and removal of selected portions of the building.

1.3 DEFINITIONS

- A. Accessible Route: A continuous unobstructed path connecting accessible elements and spaces of an accessible site, building or facility that can be negotiated by a person with a disability using a wheelchair, and that is also safe for and usable by persons with other disabilities. Interior accessible routes may include corridors, hallways, floors, ramps, elevators and lifts. Exterior accessible routes may include accessible parking stalls and access aisles, curb ramps, crosswalks at vehicular ways, walks, ramps and lifts.
- B. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.
- C. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 SUBMITTALS

- A. Surveys: Submit survey of accessible route improvements stamped and signed by land surveyor or professional engineer certifying that elevations and slopes of improvements comply with disabled access requirements.
 - 1. Survey shall be a separate submittal and shall also be included in the Project Record Documents.

1.5 QUALITY ASSURANCE

- A. Surveyor Qualifications: A professional engineer or land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.
- B. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - Structural Elements: When cutting of structural elements must be performed, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.
 - 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operational elements include the following:
 - a. Primary operational systems and equipment.
 - b. Fire separation assemblies.
 - c. Air or smoke barriers.
 - d. Fire-suppression systems.
 - e. Mechanical systems piping and ducts.
 - f. Control systems.
 - g. Communication systems.
 - h. Fire-detection and alarm systems.
 - i. Conveying systems.
 - j. Electrical wiring systems.
 - k. Operating systems of special construction.
 - 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Other construction elements include but are not limited to the following:
 - a. Water, moisture, or vapor barriers.
 - b. Membranes and flashings.
 - c. Sprayed fire-resistive material.

- d. Equipment supports.
- e. Piping, ductwork, vessels, and equipment.
- 4. Visual Elements: Cut and patch construction in a manner that results in no visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- C. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in Division 02 trough 33 Sections.
- B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
 - If identical materials are unavailable or cannot be used, use materials that, when installed, will
 provide a match acceptable to Architect for the visual and functional performance of in-place
 materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, and other construction affecting the Work.
 - 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.
 - 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.
- B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 - 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.

- 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
- 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
- C. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 - 1. Description of the Work.
 - 2. List of detrimental conditions, including substrates.
 - 3. List of unacceptable installation tolerances.
 - 4. Recommended corrections.
- D. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Existing Utility Information: Furnish information to local utility and Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.
- B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect according to requirements in Division 01 Section "Request for Information."

3.3 CONSTRUCTION LAYOUT

- A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly.
- B. General: Engage a land surveyor to lay out the Work using accepted surveying practices.
 - 1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
 - 2. Establish limits on use of Project site.

- 3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions
- 4. Inform installers of lines and levels to which they must comply.
- 5. Check the location, level and plumb, of every major element as the Work progresses.
- 6. Notify Architect when deviations from required lines and levels exceed allowable tolerances.
- 7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.
- C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.
- D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.
- E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.

3.4 FIELD ENGINEERING

- A. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.
 - 1. Do not change or relocate existing benchmarks or control points without prior written approval of Architect. Report lost or destroyed permanent benchmarks or control points promptly. Report the need to relocate permanent benchmarks or control points to Architect before proceeding.
 - 2. Replace lost or destroyed permanent benchmarks and control points promptly. Base replacements on the original survey control points.
 - 3. Where the actual location or elevation of layout points cannot be marked, provide temporary reference points sufficient to locate the Work.
 - 4. Remove temporary reference points when no longer needed. Restore marked construction to its original condition.
- B. Survey of Accessible Routes: On completion of site improvements, prepare a topographic survey of accessible routes showing dimensions, locations, and elevations of accessible features in order to certify compliance with requirements for disabled access. Survey shall be limited to site features included in the Work of the Project.
- C. Certified Survey: On completion of site drainage features, foundation walls, major site improvements, and other work requiring field-engineering services, prepare a certified survey showing dimensions, locations, angles, and elevations of construction and sitework.

3.5 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.
 - 4. Maintain minimum headroom clearance of 96 inches in occupied spaces and 90 inches in unoccupied spaces.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.
- F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.
- G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.
- H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 - 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 - 2. Allow for building movement, including thermal expansion and contraction.
 - Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.6 CUTTING, PATCHING, AND REPAIRING

- A. Cutting, Patching and Repairing, General: Employ skilled workers to perform cutting, patching, and/or repairing. Proceed with cutting, patching, and repairing at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.
- C. Temporary Support: Provide temporary support of work to be cut.
- D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Division 01 Section "Summary."
- F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.
- G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Division 31 Sections where required by cutting and patching operations.
 - 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.

- 6. Proceed with patching after construction operations requiring cutting are complete.
- H. Patching and Repairing: Patch and repair construction by grinding, filling, leveling, refinishing, closing up, and similar operations following performance of other work. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched and repaired areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - Clean piping, conduit, and similar features before applying paint or other finishing materials
 - b. Restore damaged pipe covering to its original condition.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - b. Where finishes have been removed, patch and repair substrates to receive new finishes; substrates shall be prepared to comply with requirements of manufacturer of final finish material.
 - 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.
- I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 OWNER-INSTALLED PRODUCTS

- A. Site Access: Provide access to Project site for Owner's construction personnel.
- B. Coordination: Coordinate construction and operations of the Work with work performed by Owner's construction personnel.
 - 1. Construction Schedule: Inform Owner of Contractor's preferred construction

- schedule for Owner's portion of the Work. Adjust construction schedule based on a mutually agreeable timetable. Notify Owner if changes to schedule are required due to differences in actual construction progress.
- 2. Preinstallation Conferences: Include Owner's construction personnel at preinstallation conferences covering portions of the Work that are to receive Owner's work. Attend preinstallation conferences conducted by Owner's construction personnel if portions of the Work depend on Owner's construction.

3.8 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
 - 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
 - 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
 - a. Use containers intended for holding waste materials of type to be stored.
- B. Site: Maintain Project site free of waste materials and debris.
- C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
- D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
- E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.
- F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways. Comply with waste disposal requirements in Division 01 Section "Construction Waste Management and Disposal."
- H. During handling and installation, clean and protect construction in progress and

- adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.9 STARTING AND ADJUSTING

- A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.
- C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Manufacturer's Field Service: Comply with qualification requirements in Division 01 Section "Quality Requirements."

3.10 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION

SECTION 017419 CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for the following:
 - 1. Salvaging nonhazardous construction and demolition waste.
 - 2. Recycling nonhazardous construction and demolition waste.
 - 3. Disposing of nonhazardous construction and demolition waste.

B. Related Requirements:

1. Division 31 Section "Site Clearing" for disposition of waste resulting from site clearing and removal of above- and below-grade improvements.

1.3 DEFINITIONS

- A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
- B. Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.
- C. Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.
- D. Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.
- E. Salvage: Recovery of demolition or construction waste and subsequent sale or reuse in another facility.
- F. Salvage and Reuse: Recovery of demolition or construction waste and subsequent incorporation into the Work.

1.4 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition and construction waste becomes property of Contractor.

1.5 ACTION SUBMITTALS

A. Waste Management Plan: Submit Waste Management Plan within 30 days of date established for the Notice to Proceed indicating method of compliance with the California Green Building Standards Code.

1.6 INFORMATIONAL SUBMITTALS

- A. Waste Reduction Progress Reports: Concurrent with each Application for Payment, submit report. Use separate forms for construction waste and demolition waste. Include the following information:
 - 1. Material category.
 - 2. Generation point of waste.
 - 3. Total quantity of waste in tons.
 - 4. Quantity of waste salvaged, both estimated and actual in tons.
 - 5. Quantity of waste recycled, both estimated and actual in tons.
 - 6. Total quantity of waste recovered (salvaged plus recycled) in tons.
 - 7. Total quantity of waste recovered (salvaged plus recycled) as a percentage of total waste.
- B. Waste Reduction Calculations: Before request for Substantial Completion, submit calculated end-of-Project rates for salvage, recycling, and disposal as a percentage of total waste generated by the Work.
- C. Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations. Indicate whether organization is tax exempt.
- D. Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations. Indicate whether organization is tax exempt.
- E. Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.
- F. Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

1.7 QUALITY ASSURANCE

A. Waste Management Coordinator Qualifications: Experienced firm, or individual employee assigned by the General Contractor, with a record of successful waste management coordination of projects with similar requirements. Individual of firm, or

- Contractor's employee, shall be a LEED-Accredited Professional, certified by the USGBC, as waste management coordinator.
- B. Regulatory Requirements: Comply with transportation and disposal regulations of authorities having jurisdiction.
- C. Waste Management Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to waste management including, but not limited to, the following:
 - 1. Review and discuss waste management plan including responsibilities of waste management coordinator.
 - 2. Review requirements for documenting quantities of each type of waste and its disposition.
 - 3. Review and finalize procedures for materials separation and verify availability of containers and bins needed to avoid delays.
 - 4. Review procedures for periodic waste collection and transportation to recycling and disposal facilities.
 - 5. Review waste management requirements for each trade.

1.8 WASTE MANAGEMENT PLAN/REGULATORY REQUIREMENTS

- A. Construction Waste Management, General: Recycle and/or salvage for reuse a minimum of 65 percent of the non-hazardous construction and demolition waste in accordance with one of the following 2019 California Green Standards Code (GBSC) Sections, or meet a local construction and demolition waste management ordinance, whichever is more stringent:
 - 1. Construction Waste Management Plan (GBSC Section 5.408.1.1): Where a local jurisdiction does not have a construction and demolition waste management ordinance that is more stringent, provide Waste Management Plan that:
 - a. Identifies the construction and demolition waste materials to be diverted from disposal by efficient usage, recycling, reuse on the project or salvage for future use or sale.
 - b. Determines if construction and demolition waste materials will be sorted on-site (source separated) or bulk mixed (single stream).
 - c. Identifies diversion facilities where construction and demolition waste material collected will be taken.
 - d. Specifies the amount of construction and demolition waste materials diverted shall be calculated by weight or volume, but not by both.
 - 2. Waste Management Company (GBSC Section 5.408.1.2): Utilize a waste management company that can provide verifiable documentation that the percentage of construction and demolition waste material diverted from the landfill complies with CGBSC Section 5.408.1.
 - a. Exception 1: Excavated soil and land-clearing debris.
 - b. Exception 2: Alternate waste reduction methods developed by working with

- local agencies if diversion or recycle facilities capable of compliance with this item do not exist.
- c. Demolition waste meeting local ordinance or calculated in consideration of local recycling facilities and markets.
- 3. Waste Stream Reduction Alternative (GBSC Section 5.408.1.3): The combined weight of new construction disposal that does not exceed two pounds per square foot of building area may be deemed to meet the 65 percent minimum requirement as approved by the enforcing agency.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PLAN IMPLEMENTATION

- A. General: Implement approved waste management procedures. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management procedures during the entire duration of the Contract.
 - 1. Comply with operation, termination, and removal requirements in Division 01 Section "Temporary Facilities and Controls."
- B. Waste Management Coordinator: Engage a waste management coordinator to be responsible for implementing, monitoring, and reporting status of waste management work plan. Coordinator shall be present at Project site full time for duration of Project.
- C. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work.
 - 1. Distribute waste management procedures to everyone concerned within three days of submittal return.
 - 2. Distribute waste management procedures to entities when they first begin work on-site. Review procedures and locations established for salvage, recycling, and disposal.
- D. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Designate and label specific areas on Project site necessary for separating materials that are to be salvaged, recycled, reused, donated, and sold.
 - 2. Comply with Division 01 Section "Temporary Facilities and Controls" for controlling dust and dirt, environmental protection, and noise control.

3.2 SALVAGING DEMOLITION WASTE

- A. General: Contract Documents identify items to be salvaged for reinstallation and items to be salvaged to the Owner; items indicated to be removed become the Contractor's property, Contractor may salvage removed items and offer for sale and/or donation.
- B. Salvaged Items for Reuse/Reinstallion in the Work: Salvage items for reuse and handle as follows:
 - 1. Clean salvaged items.
 - 2. Pack or crate items after cleaning. Identify contents of containers with label indicating elements, date of removal, quantity, and location where removed.
 - 3. Store items in a secure area until installation.
 - 4. Protect items from damage during transport and storage.
 - 5. Install salvaged items to comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make items functional for use indicated.
- C. Salvaged Items to Owner: Salvage items for Owner's use and handle as follows:
 - 1. Clean salvaged items.
 - 2. Pack or crate items after cleaning. Identify contents of containers with label indicating elements, date of removal, quantity, and location where removed.
 - 3. Store items in a secure area until delivery to Owner.
 - 4. Transport items to Owner's storage area designated by Owner.
 - 5. Protect items from damage during transport and storage.
- D. Salvaged Items for Sale and/or Donation: Not permitted on Project site.
- E. Salvaged Items for Reinstallation or Owner's Use:
 - 1. Doors and Hardware: Brace open end of door frames. Except for removing door closers, leave door hardware attached to doors.
 - 2. Equipment: Drain tanks, piping, and fixtures. Seal openings with caps or plugs. Protect equipment from exposure to weather.
 - 3. Plumbing Fixtures: Separate by type and size.
 - 4. Lighting Fixtures: Separate lamps by type and protect from breakage.
 - 5. Electrical Devices: Separate switches, receptacles, switchgear, transformers, meters, panelboards, circuit breakers, and other devices by type.

3.3 RECYCLING DEMOLITION AND CONSTRUCTION WASTE, GENERAL

- A. General: Recycle paper and beverage containers used by on-site workers.
- B. Recycling Receivers and Processors: Refer to local county websites for the county in which the Project is located for listings of available recycling receivers and processors, and materials accepted.
- C. Recycling Incentives: Revenues, savings, rebates, tax credits, and other incentives received for recycling waste materials shall accrue to Contractor.

- D. Preparation of Waste: Prepare and maintain recyclable waste materials according to recycling or reuse facility requirements. Maintain materials free of dirt, adhesives, solvents, petroleum contamination, and other substances deleterious to the recycling process.
- E. Procedures: Separate recyclable waste from other waste materials, trash, and debris. Separate recyclable waste by type at Project site to the maximum extent practical according to approved construction waste management plan.
 - 1. Provide appropriately marked containers or bins for controlling recyclable waste until removed from Project site. Include list of acceptable and unacceptable materials at each container and bin.
 - a. Inspect containers and bins for contamination and remove contaminated materials if found.
 - 2. Stockpile processed materials on-site without intermixing with other materials. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 3. Stockpile materials away from construction area. Do not store within drip line of remaining trees.
 - 4. Store components off the ground and protect from the weather.
 - 5. Remove recyclable waste from Owner's property and transport to recycling receiver or processor.

3.4 RECYCLING DEMOLITION WASTE

- A. Asphalt Paving: Break up and transport paving to asphalt-recycling facility.
- B. Concrete: Remove reinforcement and other metals from concrete and sort with other metals.
- C. Metals: Separate metals by type.
 - 1. Structural Steel: Stack members according to size, type of member, and length.
 - 2. Remove and dispose of bolts, nuts, washers, and other rough hardware.

3.5 RECYCLING CONSTRUCTION WASTE

A. Packaging:

- 1. Cardboard and Boxes: Break down packaging into flat sheets. Bundle and store in a dry location.
- 2. Polystyrene Packaging: Separate and bag materials.
- 3. Wood Pallets: As much as possible, require deliveries using pallets to remove pallets from Project site. For pallets that remain on-site, break down pallets into component wood pieces and comply with requirements for recycling wood.
- 4. Crates: Break down crates into component wood pieces and comply with requirements for recycling wood.

B. Wood Materials:

- 1. Clean Cut-Offs of Lumber: Grind or chip into small pieces.
- 2. Clean Sawdust: Bag sawdust that does not contain painted or treated wood.
 - a. Comply with requirements in Division 32 Sections as applicable to planting for use of clean sawdust as organic mulch.
- C. Gypsum Board: Stack large clean pieces on wood pallets or in container and store in a dry location.

3.6 DISPOSAL OF WASTE

- A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
 - 1. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
- B. Burning: Do not burn waste materials.
- C. Disposal: Remove waste materials from Owner's property and legally dispose of them.

END OF SECTION

SECTION 017700 CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Closeout procedures at completion.
 - 2. Final cleaning.
 - 3. Repair of the Work.

B. Related Requirements:

- 1. Division 01 Section "Operation and Maintenance Data" for operation and maintenance documentation requirements.
- 2. Division 01 Section "Project Record Drawings" for preparing and submitting Project Record Drawings.
- 3. Division 01 Section "Warranties" for submitting final warranty information.
- 4. Division 01 Section "Demonstration and Training" for requirements for instructing Owner's personnel.
- 5. Divisions 02 through 33 Sections for specific closeout and special cleaning requirements for the Work in those Sections.

1.3 SUBSTANTIAL COMPLETION PROCEDURES

- A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
- B. Submittals Prior to Substantial Completion: Submit the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 2. Submit closeout documentation specified in other Division 01 Sections, including project record drawings, operation and maintenance data, construction

- photographic documentation, warranties, and similar final record information.
- 3. Submit closeout documentation specified in individual Division 02 through 33 Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
- 4. Submit maintenance materials specified in individual Division 02 through 33 Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number where applicable.
- 5. Submit test/adjust/balance records.
- 6. Submit sustainable design submittals not previously submitted.
- 7. Submit changeover information related to Owner's occupancy, use, operation, and maintenance
- C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Division 01 Section "Demonstration and Training."
 - 6. Advise Owner of changeover in utilities.
 - 7. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 8. Complete final cleaning requirements, including touchup painting.
 - 9. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- D. Inspection: Submit a written request for inspection for Completion a minimum of 10 days prior to date the work will be completed and ready for inspection. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected.
 - 1. Architect's Punch List: During inspection, Architect will prepare a list of items needing completion or correction (punch list), a copy of the punch list will be distributed to the Contractor and Owner.
 - 2. Reinspection: Request reinspection when the Work identified in previous inspection as incomplete is completed or corrected.
 - 3. Results of completed inspection will form the basis of requirements for final completion.
- E. Contractor's Cost for Reinspection: Architect will perform one inspection and one reinspection at no additional cost to the Contractor. The expense for the Architect's time for additional inspections will be paid by the Owner with the amount being deducted from the Contract Sum. The expense will be based on an hourly rate in

accordance with the Architect's standard hourly rate schedule in effect at the time the work is performed with a minimum of \$400.00 dollars for each additional reinspection.

1.4 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor.
 - 2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
 - 3. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.
 - c. Name of Architect (Company name).
 - d. Name of Contractor (Company Name).
 - e. Page number.
 - 4. Submit list of incomplete items in one of the following formats:
 - a. MS Excel electronic file. Architect will return annotated file.
 - b. PDF electronic file. Architect will return annotated file.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.
 - 1. Use cleaning products that comply with the California Green Building Standards Code maximum allowable VOC levels.

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building

cleaning and maintenance program. Comply with manufacturer's written instructions.

- 1. Complete the following cleaning operations before requesting inspection for Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 - b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 - c. Rake grounds that are neither planted nor paved to a smooth, eventextured surface.
 - d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 - e. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - f. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - g. Sweep concrete floors broom clean in unoccupied spaces.
 - h. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 - Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, visionobscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.
 - j. Remove labels that are not permanent.
 - k. Wipe surfaces of mechanical, electrical, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 - I. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
 - m. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
 - n. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.
 - o. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
 - p. Leave Project clean and ready for occupancy.
- C. Construction Waste Disposal: Comply with waste disposal requirements in Division 01 Section "Construction Waste Management and Disposal."

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for

determination of Substantial Completion.

- 1. Comply with requirements of Division 02 through 33 Sections as applicable to the Work to be restored and/or repaired.
- B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
 - 1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
 - 2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
 - 3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
 - 4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION

SECTION 017823 OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance documentation, including the following:
 - 1. Operation and maintenance documentation directory manuals.
 - 2. Emergency manuals.
 - 3. Systems and equipment operation manuals.
 - 4. Systems and equipment maintenance manuals.
 - Product maintenance manuals.

B. Related Sections:

- 1. Division 01 Section "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
- 2. Division 01 Section "Demonstration and Training" for demonstration and training materials
- 3. Divisions 02 through 33 Sections for specific operation and maintenance manual requirements for the Work in those Sections.

1.3 SUBMITTALS

- A. Closeout Submittal: Submit operation and maintenance manuals indicated. Provide content for each manual as specified in individual Specification Sections, and as previously reviewed and approved at the time of individual Section submittals; where applicable, clarify and update previously reviewed content to correspond to revisions and field conditions. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Initial Submittal: Submit draft electronic copy of each manual at least 30 days before commencing demonstration and training. Architect will comment on whether content of operations and maintenance submittal is acceptable.
 - a. Correct or revise each manual to comply with Architect's comments. Submit final submittal copies of each corrected manual within 15 days of receipt of Architect's comments and prior to commencing demonstration and training.

- 2. Final Submittal: Submit in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Submit the following:
 - a. Paper Copy: Submit one paper-copy set of marked-up record prints that have been revised to address Architect's comments from the initial submittal.
 - b. Digital Data Files: Submit digital data files of Project Record Drawings as PDF files on a thumb-drive.
- B. Comply with Division 01 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

1.4 FORMAT OF OPERATION AND MAINTENANCE MANUALS

- A. Electronic File Manuals: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - Electronic Files: Use electronic files prepared by manufacturer where available.
 Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Bookmark individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
- B. Paper Copy Manuals: Submit manuals in the form of hard-copy, bound and labeled volumes
 - 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf or post-type binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 - b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents, and indicate Specification Section number(s) on bottom of spine. Indicate volume number for multiple-volume sets.
 - 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and

- major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
- 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment. Enclose title pages and directories in clear plastic sleeves.
- 4. Supplementary Text: Prepared on 8-1/2-by-11-inch white bond paper.
- 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

1.5 REQUIREMENTS FOR OPERATION AND MAINTENANCE MANUALS

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials and in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - Manual contents.
- B. Title Page: Include the following information as applicable:
 - 1. Subject matter included in the manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for the following:
 - a. Contractor.
 - b. Installer.
 - c. Architect.
 - d. Commissioning Authority if applicable.
 - e. Architect's major consultants that designed the systems contained in the manuals.
 - 6. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

1.6 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY MANUAL

- A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals. List items and their location to facilitate ready access to desired information. Include the following:
 - 1. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.
 - 2. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list
 - 3. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

1.7 EMERGENCY MANUALS

- A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.
- B. Content: Organize manual into a separate section for each of the following:
 - 1. Type of emergency.
 - 2. Emergency instructions.
 - 3. Emergency procedures.
- C. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 - 1. Fire.
 - 2. Flood.
 - Gas leak.
 - 4. Water leak.
 - 5. Power failure.
 - 6. Water outage.
 - 7. System, subsystem, or equipment failure.

- 8. Chemical release or spill.
- D. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.
- E. Emergency Procedures: Include the following, as applicable:
 - 1. Instructions on stopping.
 - 2. Shutdown instructions for each type of emergency.
 - 3. Operating instructions for conditions outside normal operating limits.
 - 4. Required sequences for electric or electronic systems.
 - 5. Special operating instructions and procedures.

1.8 SYSTEMS AND EQUIPMENT OPERATION MANUALS

- A. Systems and Equipment Operation Manual: Assemble a complete set of data indicating operation of each system, subsystem, and piece of equipment not part of a system. Include information required for daily operation and management, operating standards, and routine and special operating procedures.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- B. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor is delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- C. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.

- 6. Limiting conditions.
- 7. Performance curves.
- 8. Engineering data and tests.
- 9. Complete nomenclature and number of replacement parts.
- D. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- E. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- F. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification

1.9 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Systems and Equipment Maintenance Manuals: Assemble a complete set of data indicating maintenance of each system, subsystem, and piece of equipment not part of a system. Include manufacturers' maintenance documentation, preventive maintenance procedures and frequency, repair procedures, wiring and systems diagrams, lists of spare parts, and warranty information.
 - Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- B. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranties and bonds as described below.
- C. Source Information: List each system, subsystem, and piece of equipment included in manual, identify by product name and arrange to match table of contents. For each piece of equipment, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

- D. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - Standard maintenance instructions and bulletins; include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - a. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- E. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- F. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- G. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- H. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- I. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

- J. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of maintenance manuals.

1.10 PRODUCT MAINTENANCE MANUALS

- A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- B. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- C. Source Information: List each product included in data identified by product name and arranged to match table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- D. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- E. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- F. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 017836 WARRANTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for warranties required by the Contract Documents, including manufacturers' standard warranties on products and special warranties.
- B. Related Sections include but are not limited to the following:
 - 1. Division 01 Section "Closeout Procedures."
 - 2. Division 01 Section "Operation and Maintenance Data."
 - 3. Division 02 through 33 Sections for specific warranty requirements.

1.3 DEFINITIONS

- A. Standard product warranties are preprinted written warranties published by individual manufacturers for particular products and are specifically endorsed by the manufacturer to the Owner.
- B. Special project warranties are written warranties required by or incorporated in the Contract Documents, either to extend time limits provided by standard warranties or to provide greater rights for the Owner.

1.4 WARRANTY REQUIREMENTS

- A. Disclaimers and Limitations: Manufacturer's disclaimers and limitations on product warranties do not relieve the Contractor of the warranty on the Work that incorporates the products. Manufacturer's disclaimers and limitations on product warranties do not relieve suppliers, manufacturers, and subcontractors required to countersign special warranties with the Contractor.
- B. Related Damages and Losses: When correcting failed or damaged warranted construction, remove and replace construction that has been damaged as a result of such failure or must be removed and replaced to provide access for correction of warranted construction.
- C. Reinstatement of Warranty: When Work covered by a warranty has failed and been

- corrected by replacement or rebuilding, reinstate the warranty by written endorsement. The reinstated warranty shall be equal to the original warranty with an equitable adjustment for depreciation.
- D. Replacement Cost: Upon determination that Work covered by a warranty has failed, replace or rebuild the Work to an acceptable condition complying with requirements of the Contract Documents. The Contractor is responsible for the cost of replacing or rebuilding defective Work regardless of whether the Owner has benefited from use of the Work through a portion of its anticipated useful service life.
- E. Owner's Recourse: Expressed warranties made to the Owner are in addition to implied warranties and shall not limit the duties, obligations, rights, and remedies otherwise available under the law. Expressed warranty periods shall not be interpreted as limitations on the time in which the Owner can enforce such other duties, obligations, rights, or remedies.
 - 1. Rejection of Warranties: The Owner reserves the right to reject warranties and to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
- F. Where the Contract Documents require a special warranty, or similar commitment on the Work or part of the Work, the Owner reserves the right to refuse to accept the Work, until the Contractor presents evidence that entities required to countersign such commitments are willing to do so.

1.5 SUBMITTAL OF PROJECT WARRANTIES

- A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.
- B. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.
- C. Warranties: Submit (2) copies of each required warranty properly executed by the Contractor, or by the Contractor, subcontractor, supplier, or manufacturer. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual.
 - Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
 - 2. Include copy of each warranty in operation and maintenance documentation.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 017839 PROJECT RECORD DRAWINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for Project Record Drawings:

B. Related Sections:

- 1. Division 01 Section "Use of Architect's Electronic Files" for requirements related to use of Architect's digital data files.
- 2. Division 01 Section "Execution" for surveys of exterior accessible routes.
- 3. Division 01 Section "Closeout Procedures" for general closeout procedures.
- 4. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 RECORD DRAWING SUBMITTAL

- A. Closeout Submittal: Submit Record Drawings as follows:
 - 1. Initial Submittal: Submit one paper-copy set of marked-up record prints.
 - Architect will indicate whether record prints are acceptable or if additional information or documentation is needed, and will return the set to the Contractor.

2. Final Submittal:

- a. Paper Copy: Submit one paper-copy set of marked-up record prints that have been revised to address Architect's comments from the initial submittal.
- b. Digital Data Files: Submit digital data files of Project Record Drawings as PDF files on a thumb-drive.

1.4 PROJECT RECORD DRAWINGS

A. Record Drawings: Maintain one set of paper copies of the Contract Drawings during the construction period for Project Record Drawing Purposes.

- 1. Project Record Drawing print sets shall include all drawings of the Contract Documents including original project Drawings, Shop Drawings, Supplemental Drawings, Coordination Drawings, Clarification Drawings, Change Orders, and similar drawings. Record Drawing set shall include all drawings of Contract Documents whether or not changes and additional information were recorded.
- 2. Store Project Record Drawings in the field office apart from the Contract Documents used for construction; do not use Project Record Drawings for construction purposes.
- 3. Maintain Record Drawings in good order and in a clean, dry, legible condition, protected from deterioration and loss.
- 4. Provide access to Project Record Drawings for Architect's reference during normal working hours.
- 5. Incorporate new and revised drawings into Project Record Drawings as modifications are issued; do not wait until the end of Project.
- 6. Mark Record Prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an understandable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.
 - e. Cross-reference record prints to corresponding archive photographic documentation.
- 7. Content: Types of items requiring marking include, but are not limited to, the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations below first floor.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduits.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Duct size and routing.
 - i. Locations of concealed internal utilities.
 - j. Changes made by Change Order or Construction Change Directive.
 - k. Changes made following Architect's written orders.
 - I. Details not on the original Contract Drawings.
 - m. Field records for variable and concealed conditions.
 - n. Record information on the Work that is shown only schematically.
- 8. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
- 9. Mark record prints with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

- 10. Mark important additional information that was either shown schematically or omitted from original Drawings.
- 11. Note Construction Change Directive numbers, Change Order numbers, and similar identification, where applicable.
- B. Newly Prepared Record Drawings: Prepare new Drawings instead of preparing Record Drawings where Architect determines that neither the original Contract Drawings nor Shop Drawings are suitable to show actual installation.
 - 1. New Drawings may be required when a Change Order is issued as a result of accepting an alternate, substitution, or other modification.
 - 2. Consult Architect for proper scale and scope of detailing and notations required to record the actual physical installation and its relation to other construction. Integrate newly prepared Record Drawings into Record Drawing sets; comply with procedures for formatting, organizing, copying, binding, and submitting.
- C. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, submit marked-up record prints to Architect, following Architect's review and action, prepare a full set of corrected digital data files of the Contract Drawings, as follows:
 - 1. Format: PDF electronic file.
 - 2. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
 - 3. Refer instances of uncertainty to Architect for resolution.
 - 4. Architect will furnish Contractor one set of digital data files of the Contract Drawings in PDF format for use in recording information.
 - a. Refer to Division 01 Section 011105 "Use of Architect's Electronic Files" for requirements related to use of Architect's digital data files.

D. Format:

- 1. Record Prints: Organize record prints into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
- 2. Record Digital Data Files:
 - a. Format: Annotated PDF electronic file.
 - b. Organize digital data information into separate electronic files corresponding with each building design discipline of the Contract Documents; name each file with the corresponding design discipline.
- E. Identification: Include the following information on each Record Drawing:
 - 1. "PROJECT RECORD DRAWING" designation located in a prominent location.
 - 2. Project name if Project name is not included in a title block as part of the drawing.
 - Date.
 - 4. Name of Architect if Architect's name is not included in a title block as part of the drawing.
 - 5. Name of Contractor.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 017900 DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for instructing Owner's personnel in demonstration and training of operation and maintenance of systems, subsystems, and equipment.

B. Related Sections:

- 1. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manuals and data.
- 2. Divisions 02 through 33 Sections for specific requirements for demonstration and training for products in those Sections.

1.3 SUBMITTALS

- A. Training materials in addition to Operation and Maintenance manuals required in Division 01 Section "Operation and Maintenance Data."
- B. Instruction Program Schedule: Submit outline schedule of instructional program that includes and coordinates programs for all products, equipment, and systems requiring demonstration and training. Schedule shall include a list of training sessions, proposed dates, times, length of instruction time.
 - 1. Schedule shall be coordinated and finalized with the Owner.

1.4 QUALITY ASSURANCE

A. Instructor Qualifications: A factory-authorized service representative experienced in operation and maintenance procedures and training of Owner's personnel.

1.5 COORDINATION

A. Coordinate instruction schedule with Owner, adjust schedule as required to minimize disrupting Owner's operations.

- B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- C. Coordinate content of training sessions with content of approved operation and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

- A. Provide instruction programs that include training sessions for each system and for equipment not part of a system, as required by individual Specification Sections. Include instruction for the following as applicable to the system, equipment, or component:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Operating standards.
 - c. Regulatory requirements.
 - d. Equipment function.
 - e. Operating characteristics.
 - f. Limiting conditions.
 - g. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project record documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
 - 4. Operations: Include the following, as applicable:

- a. Startup procedures.
- b. Equipment or system break-in procedures.
- c. Routine and normal operating instructions.
- d. Regulation and control procedures.
- e. Control sequences.
- f. Safety procedures.
- g. Instructions on stopping.
- h. Normal shutdown instructions.
- i. Operating procedures for emergencies.
- j. Operating procedures for system, subsystem, or equipment failure.
- k. Seasonal and weekend operating instructions.
- I. Required sequences for electric or electronic systems.
- m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Assemble educational materials necessary for instruction and training. Assemble training manuals organized in coordination with requirements in Division 01 Section "Operations and Maintenance Data."
- B. Coordinate with Owner for number of instruction times, location, and number of participants.
- C. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

- A. Instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1. Owner will furnish Contractor with names and positions of participants.
- B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule initial training with Owner, through Architect with at least 7 days' advance notice.
- C. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

END OF SECTION

SECTION 018113 SUSTAINABLE DESIGN REQUIREMENTS, DSA CALGREEN

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements and procedures for compliance with the 2019 California Green Building Standards Code (CGBSC) for Division of the State Architect (DSA) requirements.

B. Related Sections:

1. Project Manual Appendix No. 2, DSA Project Submittal Guideline GL-4.

1.3 SUBMITTALS

- A. Submit Sustainable Design Requirement submittals as required by Division 02 through 33 Specification Sections. Submittals may include, but are not limited to, the following:
 - 1. Construction Waste Management Plan and other submittals as required by Division 01 Section "Construction Waste Management and Disposal."
 - 2. Air Quality: Product data for filtration media.
 - 3. Product data for adhesives, sealants, and coatings indicating VOC content of each product used.
 - 4. Product data for products containing composite wood or agrifiber products or wood glues indicating that they do not contain urea-formaldehyde resin.

1.4 REGULATORY REQUIREMENTS

- A. DSA's "Project Submittal Guideline: CalGreen Code," form GL-4 (https://www.dgs.ca.gov/-/media/Divisions/DSA/Publications/guidelines/GL_4.pdf?la=en&hash=056C301E3592D_09DC9C59DA146D04216AF108A9D). Contractor's responsibility with regard to sustainable design requirements shall include, but not be limited, to the following requirements of the 2019 California Green Building Standards Code).
- B. Outdoor Lighting: Outdoor lighting shall be designed and installed to comply with requirements of the 2019 CGBSC, Section 5.106.8.
- C. Energy Efficiency: Comply with requirements of the California Energy Code and as

- indicated on the Drawings.
- D. Plumbing Fixtures: Plumbing Fixtures shall comply with requirements of the 2019 CGBSC, Section 5.303.3.
- E. Moisture Control: Irrigation systems shall be designed and installed to prevent spray on buildings; per requirements of the 2019 CGBSC, Section 5.407.2.1.
- F. Construction Waste Management: Comply with requirements of the 2019 CGBSC, Section 5.408.1 and Division 01 Section "Construction Waste Management and Disposal." Construction Waste Management shall include, but not be limited to, the following:
 - 1. Construction Waste Management Plan.
 - 2. Recycling, reuse, and/or salvaging non-hazardous construction waste.
- G. Environmental Quality/Pollutant Control: Comply with requirements of the 2019 CGBSC, Sections as follows:
 - 1. Section 5.504.3, Covering of Duct Openings and Protection of Mechanical equipment. At the time of rough installation and during storage on the construction site until final startup of the heating, cooling and ventilating equipment, all duct and other related air distribution component openings shall be covered with tape, plastic, sheet metal or other methods acceptable to the enforcing agency to reduce the amount of dust, water and debris which may enter the system.
 - 2. Section 5.504.4.1, Adhesives and Sealants: Adhesives and sealants shall comply with the following VOC content limits when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Adhesives: 2019 CGBSC Table 5.504.4.1 Adhesive VOC Limit:
 - 1) Indoor Carpet Adhesives: 50 g/L.
 - 2) Carpet Pad Adhesives: 50 g/L.
 - 3) Rubber Floor Adhesives: 60 g/L.
 - 4) Wood Flooring Adhesive: 100 g/L.
 - 5) Subfloor Adhesives: 50 g/L.
 - 6) Ceramic Tile Adhesives: 65 g/L.
 - 7) VCT and Asphalt Tile Adhesives: 50 g/L.
 - 8) Gypsum Board and Panel Adhesives: 50 g/L.
 - 9) Cove Base Adhesives: 50 g/L.
 - 10) Multipurpose Construction Adhesives: 70 g/L.
 - 11) Structural Glazing Adhesives: 100 g/L.
 - 12) Single-Ply Roof Membrane Adhesive: 250 g/L.
 - 13) Other Adhesives not specifically listed: 50 g/L.
 - 14) PVC Welding Compounds: 510 g/L.
 - 15) CPVC Welding Compounds: 490 g/L.
 - 16) ABS Welding Compounds: 325 g/L.
 - 17) Plastic Cement Welding Compounds: 250 g/L.
 - 18) Adhesive Primer for Plastic: 550 g/L.
 - 19) Contact Adhesive: 80 g/L.

- 20) Special-Purpose Contact Adhesive (contact adhesive that is used to bond melamine-covered board, metal, unsupported vinyl, rubber, or wood veneer 1/16 inch or less in thickness to any surface): 250 g/L.
- 21) Structural Wood Member Adhesive: 140 g/L.
- 22) Top and Trim Adhesive: 250 g/L.
- 23) Metal-to-Metal Adhesives: 30 g/L.
- 24) Plastic Foam Adhesives: 50 g/L.
- 25) Adhesives for Porous Materials (Except Wood): 50 g/L.
- 26) Wood Glues: 30 g/L.
- 27) Fiberglass Adhesives: 80 g/L.
- b. Sealants: 2019 CGBSC Table 5.504.4.2, Sealant VOC Limit:
 - 1) Architectural Sealants: 250 g/L.
 - 2) Nonmembrane Roof Sealants: 300 g/L.
 - 3) Paving Sealants: 250 g/L.
 - 4) Single-Ply Roof Membrane Sealants: 450 g/L.
 - 5) Other Sealants: 420 g/L.
 - 6) Sealant Primers for Nonporous Substrates: 250 g/L.
 - 7) Sealant Primers for Porous Substrates: 775 g/L.
 - 8) Modified Bituminous Sealant Primers: 500 g/L.
 - 9) Other Sealant Primers: 750 g/L.
- 3. Section 5.504.4.3, Paints and Coatings: Architectural Coatings shall comply with the following VOC content limits when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Paints and Coatings: 2019 CGBSC Table 5.504.4.3, VOC Content Limits for Architectural Coatings:
 - 1) Flat Paints and Coatings: VOC not more than 50 g/L.
 - 2) Nonflat Paints and Coatings: VOC not more than 100 g/L.
 - 3) Nonflat High-Gloss Paints and Coatings: VOC not more than 150 g/L.
 - 4) Dry-Fog Coatings: VOC not more than 150 g/L.
 - 5) Floor Coatings: VOC not more than 100 g/L.
 - 6) Pretreatment Wash Primers: VOC not more than 420 g/L.
 - 7) Primers, Sealers, and Undercoaters: VOC not more than 100 g/L.
 - 8) Rust Preventative Coatings Applied to Ferrous Metals: VOC not more than 250 g/L.
 - 9) Shellacs, Clear: VOC not more than 730 g/L.
 - 10) Shellacs, Pigmented: VOC not more than 550 g/L.
 - 11) Stains: VOC not more than 250 g/L.
 - 12) Clear Wood Finishes. Varnishes: VOC not more than 275 g/L.
 - 13) Clear Wood Finishes, Lacquers: VOC not more than 275 g/L.
 - 14) Zinc-Rich Industrial Maintenance Primers: VOC not more than 340 g/L.
- 4. Section 5.504.4.3.1, Aerosol Paints and Coatings: Aerosol paints and coatings shall meet the PWMIR Limits for ROC in Section 94522(a)(3) and other requirements, including prohibitions on use of certain toxic compounds and ozone depleting substances, in Sections 94522(c)(2) and (d)(2) of California

Code of Regulations, Title 17, commencing with Section 94520; and in areas under the jurisdiction of the Bay Area Air Quality Management District additionally comply with the percent VOC by weight of product limits of Regulation 8 Rule 49. Comply with requirements of 2019 CGBSC, Table 5.504.4.3.

- H. Carpet Systems: Comply with requirements of CGBSC, Section 5.504.4.4.
 - 1. All carpet installed in the building interior shall meet the requirements of California Department of Public Health, "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers," Version 1.2, January 2017 (Emissions testing method for California Specification 01350).
 - a. See California Department of Public Health's website for certification programs and testing labs.
 - 2. Carpet Adhesive: VOC content not exceeding 50 g/L per CGBSC Table 5.504.4.1 when calculated according to 40 CFR 59, Subpart D (EPA Method 24)
- I. Composite Wood Products: Comply with requirements of CGBSC Section 5.504.4.5; hardwood plywood, particleboard, and medium density fiberboard composite wood products used on the interior or exterior of the building shall meet the requirements for formaldehyde as specified in ARB's Air Toxics Control Measure (ATCM) for Composite Wood (17 CCR 93120 et seq.) Those materials not exempted by the ATCM must meet the specified emission limits, as shown in CGBSC Table 5.504.4.5.
- J. Resilient Flooring Systems: Comply with requirements CGBSC, Section 5.504.4.6.
 - 1. Where resilient flooring is installed, at least 80% of floor area receiving resilient flooring shall meet the requirements of California Department of Public Health, "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers," Version 1.2, January 2017 (Emissions testing method for California Specification 01350).
 - 2. Resilient Floor Adhesive: VOC content not exceeding 50 g/L per CGBSC Table 5.504.4.1 when calculated according to 40 CFR 59, Subpart D (EPA Method 24)
- K. HVAC Filters: Comply with requirements CGBSC, Section 5.504.5.3; in mechanically ventilated buildings, provide regularly occupied areas of the building with air filtration media for outside and return air prior to occupancy that provides at least a Minimum Efficiency Reporting Value (MERV) of 13. MERV 13 filters shall be installed prior to occupancy and recommendations for maintenance with filters of the same value shall be included in the operation and maintenance manual.
 - 1. Exception: Existing mechanical equipment.
 - 2. Labeling: Installed filters shall be clearly labeled by the manufacturer indicating the MERV rating.
- L. Outside Air Delivery: Comply with requirements CGBSC, Section 5.506.1; for mechanically or naturally ventilated spaces in buildings, meet the minimum

requirements of Section 120.1 (Requirements For Ventilation) of the 2019 California Energy Code, or the applicable local code, whichever is more stringent, and Division 1, Chapter 4 of CCR, Title 8.

M. Acoustical Control: Comply with requirements CGBSC, Section 5.507.4, employ building assemblies and components with Sound Transmission Class (STC) values determined in accordance with ASTM E 90 and ASTM E 413 or Outdoor–Indoor Sound Transmission Class (OITC) determined in accordance with ASTM E 1332, using either the prescriptive or performance method in CGBSC Section 5.507.4.1 or 5.507.4.2.

1. Exception:

- a. Buildings with few or no occupants or where occupants are not likely to be affected by exterior noise, as determined by the enforcement authority, such as factories, stadiums, storage, enclosed parking structures and utility buildings.
- b. Exception: For public schools and community colleges, the requirements of CGBSC Section 5.507.4, and all subsections, apply only to new construction.
- N. Interior Sound Transmission: Comply with requirements CGBSC, Section 5.507.4.3; wall and floor-ceiling assemblies separating tenant spaces and tenant spaces and public places shall have an STC of at least 40.
- O. Ozone Depletion and Greenhouse Gas Reductions: Comply with requirements CGBSC, Section 5.508.1; installation of HVAC, refrigeration, and fire suppression equipment shall comply with CGBSC Sections 5.508.1.1 and 5.508.1.2.
 - 1. Chlorofluorocarbons (CFCs): Install HVAC, refrigeration and fire suppression equipment that do not contain CFCs.
 - 2. Halons: Install HVAC, refrigeration and fire suppression equipment that do not contain Halons.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION

SECTION 031512 POST INSTALLED CONCRETE ANCHORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following types of post installed anchors <u>where work occurs</u> (if any):
 - 1. Expansion anchors.
 - 2. Sleeve anchors.
 - 3. Drop-in anchors.
 - 4. Adhesive anchors.

B. Related Sections:

1. Division 03 Section "Cast-in-Place Concrete."

1.3 REFERENCES

A. ACI:

- 1. ACI 318 Building Code Requirements for Structural Concrete
- 2. ACI 355.2 Standard for Evaluating the Performance of Post-Installed Mechanical Anchors in Concrete

B. ASTM:

- 1. ASTM A36 Standard Specification for Carbon Structural Steel
- 2. ASTM A153 Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware
- ASTM A193 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service
- 4. ASTM A307 Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength
- 5. ASTM A615 Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
- 6. ASTM B633 Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel
- 7. ASTM B695 Standard Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel

- 8. ASTM C881 Standard Specification Epoxy-Resin-Based Bonding Systems for Concrete
- 9. ASTM E488 Standard Test Methods for Strength of Anchors in Concrete and Masonry Elements
- 10. ASTM E1512 Standard Test Methods for Testing Bond Performance of Bonded Anchors
- ASTM F593 Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs
- C. Federal Specifications A-A-1922A, A-A01923A and A-A-55614 for Expansion and Shield-Type Anchors

D. ICC-ES

- 1. ICC-ES AC01 Acceptance Criteria for Expansion Anchors in Masonry Elements
- 2. ICC-ES AC58 Acceptance Criteria for Adhesive Anchors in Masonry Elements
- 3. ICC-ES AC70 Acceptance Criteria for Fasteners Power-Driven into Concrete, Steel and Masonry Elements
- 4. ICC-ES AC193 Acceptance Criteria for Mechanical Anchors in Concrete Elements
- 5. ICC-ES AC308 Acceptance Criteria for Post-Installed Adhesive Anchors in Concrete Elements

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated; include manufacturer's written installation instructions, physical characteristics, and load tables.
- B. Evaluation Reports: From ICC-ES or IAPMO ES for each type of post installed anchor indicated.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced installer who has completed post-installed anchor installations similar in material, design, and extent to that indicated for Project that have resulted in construction with a record of not less than 3 years of successful in-service performance.
- B. Evaluation Service Approval: Use only products that have current ICC or IAPMO Evaluation Service approval.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to job site in manufacturer's or distributor's packaging undamaged, complete with installation instructions.
- B. Protect and handle materials in accordance with manufacturer's recommendations to prevent damage or deterioration.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Carbon and Alloy Steel Nuts: ASTM A563.
- B. Carbon Steel Washers: ASTM F436.
- C. Carbon Steel Threaded Rod: ASTM F 1554; or ASTM A193 Grade B7; or ISO 898 Class 5.8.
- D. Wedge Anchors: ASTM A510; or ASTM A108.
- E. Stainless Steel Bolts, Hex Cap Screws, and Studs: ASTM F593.
- F. Stainless Steel Nuts: ASTM F594.
- G. Zinc Plating: ASTM B633.
- H. Hot-Dip Galvanizing: ASTM A153.

2.2 POST INSTALLED ANCHORS

- A. Basis of Design: Post installed anchors shall be of manufacturer, type, and size as indicated on Drawings; manufacturers indicated on the Drawings are selected from the following:
 - 1. Hilti Corporation.
 - 2. Simpson Strong-Tie Company.
- B. Post Installed Anchor Material:
 - 1. Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5 unless otherwise indicated.
 - 2. Exterior Locations and Where Stainless Steel Is Indicated: Alloy Group 1 (A1) stainless-steel bolts (Type 304), ASTM F 593, and nuts, ASTM F 594.
- C. Expansion Anchors: Wedge type, torque-controlled, with impact section to prevent thread damage complete with required nuts and washers. Provide anchors with length identification markings conforming to ICC ES AC01 or ICC ES AC193. Type and size as indicated on Drawings.
 - 1. Anchorage to Grouted Masonry, provide one of the following:
 - a. Hilti Kwik Bolt TZ-2, ICC ESR-4561.
 - b. Simpson Strong-Tie, Strong-Bolt 2 wedge anchor, IAPMO ER-0240.
 - 2. Anchorage to Concrete, provide one of the following:

- a. Hilti Kwik Bolt TZ2, ICC ESR-4266 (carbon steel and AISI Type 304 Stainless Steel).
- b. Simpson Strong-Tie, Strong-Bolt 2 wedge anchor, ICC ESR-3037.
- D. Sleeve Anchors: Torque-controlled, with impact section to prevent thread damage complete with required nuts and washers. Provide anchors with length identification markings conforming to ICC ES AC01 or ICC ES AC193. Type and size as indicated on Drawings.
 - 1. Subject to compliance with requirements, provide anchor indicated on Drawings or one of the following:
 - a. Hilti; HAD-P Undercut Anchor, ICC ESR-1546.
 - b. Submit Request for Substitution.
- E. Drop-in Anchors: Flush, internally threaded shell anchor, bottom bearing type with a slotted single piece steel shell and a tapered expander plug providing 360 degree contact with the base material. Type and size as indicated on Drawings.
 - 1. Subject to compliance with requirements, provide anchor indicated on Drawings or one of the following:
 - a. Hilti; HDI Drop-in Anchor COLA (City of LA) RR 23709.
 - b. Submit Request for Substitution.
- F. Adhesive Anchors: Two component, all weather, high performance epoxy complying with descriptive requirements of ASTM C 881, Type IV, Grade 3, Classes A, B, and C, except for gel time; mixed and dispensed through motionless, static mixing nozzle and dispensing tool. Threaded steel rod, inserts or reinforcing dowels, complete with nuts, washers, adhesive injection system, and manufacturer's installation instructions. Type and size as indicated on Drawings.
 - 1. Anchorage to Grouted Masonry, provide one of the following:
 - a. Hilti: Threaded rods or steel reinforcing bars with HIT HY-270 Adhesive Anchorage System, ICC ESR-4143.
 - b. Simpson Strong-Tie: Threaded rods or steel reinforcing bars with SET-XP Adhesive Anchorage System, IAPMO ES-0265.
 - 2. Anchorage to Concrete, provide one of the following:
 - a. Hilti: Threaded rods or steel reinforcing bars with HIT RE 500 V3 Adhesive Anchoring System, ICC ESR-3814.
 - b. Simpson Strong-Tie: Threaded rods or steel reinforcing bars with SET-XP Adhesive Anchorage System, ICC ESR-2508.
- G. Capsule Anchors: Threaded steel rod, inserts and reinforcing dowels with 45 degree chisel point, complete with nuts, washers, glass or foil capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, and manufacturer's installation instructions. Type and size as indicated on Drawings.

- 1. Subject to compliance with requirements, provide anchor indicated on Drawings or one of the following:
 - a. Hilti HVU2 Adhesive System with HVU2 capsules, ICC ER-4372.
 - b. Submit Request for Substitution.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install anchors in accordance with manufacturer's written installation instructions and as indicated on Drawings.
- B. Drilling Concrete and Concrete Unit Masonry:
 - 1. Base Material Strength: Do not drill holes in concrete or masonry until concrete, mortar, and/or grout complies with the following for the type of anchor indicated:
 - a. Expansion Anchors: Do not drill base material until base material has cured 28 days minimum.
 - b. Adhesive Anchors: Do not drill base material until base material has cured 7 days minimum.
 - Drill holes with rotary impact hammer drills using carbide-tipped bits and core
 drills using diamond core bits. Drill bits shall be of diameters as specified by the
 anchor manufacturer. Unless otherwise shown on the Drawings, all holes shall be
 drilled perpendicular to the concrete or masonry surface.
 - a. Cored Holes: Where anchors are to be installed in cored holes, use core bits with matched tolerances as specified by the manufacturer.
 - b. Embedded Items: Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Exercise care in coring or drilling to avoid damaging existing reinforcing or embedded items. Notify the Engineer if reinforcing steel or other embedded items are encountered during drilling. Take precautions as necessary to avoid damaging prestressing tendons, electrical and telecommunications conduit, and gas lines.
- C. Wedge Anchors, Sleeve Anchors, and Undercut Anchors: Protect threads from damage during anchor installation. Sleeve anchors shall be installed with sleeve fully engaged in part to be fastened. Set anchors to manufacturer's recommended torque, using a torque wrench. Following attainment of 10% of the specified torque, 100% of the specified

- torque shall be reached within 7 or fewer complete turns of the nut. If the specified torque is not achieved within the required number of turns, the anchor shall be removed and replaced unless otherwise directed by the Architect.
- D. Cartridge Injection Adhesive Anchors: Clean all holes per manufacturer instructions to remove loose material and drilling dust prior to installation of adhesive. Inject adhesive into holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive. Follow manufacturer recommendations to ensure proper mixing of adhesive components. Sufficient adhesive shall be injected in the hole to ensure that the annular gap is filled to the surface. Remove excess adhesive from the surface. Shim anchors with suitable device to center the anchor in the hole. Do not disturb or load anchors before manufacturer specified cure time has elapsed.
- E. Capsule Anchors: Perform drilling and setting operations in accordance with manufacturer instructions. Clean all holes to remove loose material and drilling dust prior to installation of adhesive. Remove water from drilled holes in such a manner as to achieve a surface dry condition. Capsule anchors shall be installed with equipment conforming to manufacturer recommendations. Do not disturb or load anchors before manufacturer specified cure time has elapsed.
- F. Observe manufacturer recommendations with respect to installation temperatures for cartridge injection adhesive anchors and capsule anchors.

3.3 FIELD QUALITY CONTROL

- A. Testing and Inspecting Agency: Owner will engage and pay for a qualified independent testing and inspecting agency to perform tests and inspections as applicable and prepare reports. Testing and Inspection Agency shall be acceptable to the Architect and the Division of the State Architect.
- B. Contractor Responsibilities:
 - 1. The Contractor shall maintain control of the quality of materials and workmanship in order to conform with the drawings and specifications.
 - 2. To facilitate testing and inspection, the Contractor shall:
 - a. Schedule tests and inspections with the Testing and Inspection Agency sufficiently in advance of operations to allow for the assignment of personnel and for the completion of testing and inspecting responsibilities.
 - b. Provide access to the Work for the designated Testing and Inspection Agency.
 - 3. The Contractor shall correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.
- C. Testing: Each type and size of anchor shall be proof load tested by the independent testing laboratory. Adhesive anchors and capsule anchors shall not be torque tested unless otherwise directed by the Structural Engineer. If any anchor fails testing, all anchors of the same type, diameter, and which were installed by the same trade and

not previously tested, shall be tested until twenty (20) consecutive anchors pass, then resume the initial test frequency.

- 1. Anchors shall not be tested prior to base material having cured for a minimum of 28 days and achieved design strength.
- 2. Minimum anchor embedments, proof loads and torques shall be as indicated on the Drawings.
- 3. Torque shall be applied with a calibrated torque wrench.
- 4. Proof loads shall be applied with a calibrated hydraulic ram. Displacement of adhesive and capsule anchors at proof load shall not exceed D/10, where D is the nominal anchor diameter.
- 5. Testing frequency shall be per 2019 2022 CBC 1910A.5.3.
 - a. Sill Plate Bolting: Test 10 percent of anchors.
 - b. Structural Applications other than Sill Plate Bolting: Test all anchors.
 - c. Non-Structural Applications (Equipment Anchorage): Test 50 percent or alternate bolts in a group, including at least one-half the anchors in each group, shall be tested.
- 6. Test acceptance criteria shall be per 2019 2022 CBC 1910A.5.5.

END OF SECTION

SECTION 033000 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:
 - 1. Footings.
 - 2. Slabs-on-grade.

B. Related Sections:

- 1. Division 01 Section "Quality and Testing Requirements" for administrative and procedural requirements for quality assurance including independent testing requirements.
- 2. Division 07 Section "Underslab Vapor Retarder."
- 3. Division 22 and 23 Sections as applicable to Plumbing and Mechanical items embedded in concrete.
- 4. Division 26 Sections as applicable to Electrical items embedded in concrete.
- 5. Division 31 Sections as applicable to earthwork.
- 6. Division 32 Sections as applicable to concrete paving and site concrete work.

1.3 DEFINITIONS

- A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.
- B. Water/Cement Ratio (w/cm): The ratio by weight of water to cementitious materials.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
- C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
 - 1. Shop drawings shall be in accordance with ACI SP-66 or CRSI "Manual of Standard Practice."
 - 2. Mill certificates: Steel producer's certificates of mill analysis, tensile, and bend tests for reinforcing steel. Submit certificates accompanying the Shop Drawings.
- D. Construction Joint Layout Shop Drawings: Show locations of proposed construction and control joints other than, or in addition to, those as indicated on the drawings. Location of joints is subject to approval of the Architect.
- E. Qualification Data: For the Ready-mixed concrete manufacturer, include copies of applicable ACI certificates.
- F. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Form materials and form-release agents.
 - 4. Steel reinforcement and accessories.
 - 5. Fiber reinforcement.
 - 6. Curing compounds.
 - 7. Floor and slab treatments.
 - 8. Bonding agents.
 - 9. Adhesives.
 - 10. Semi-rigid joint filler.
 - 11. Joint filler strips.
 - 12. Repair materials.
- G. Material Test Reports: For aggregates, from a qualified testing agency, indicating compliance with requirements:
- H. Mill certificates: Steel producer's certificates of mill analysis, tensile, and bend tests for reinforcing steel. Submit certificates accompanying the Shop Drawings.
- I. Steel Reinforcement Record Drawings: Shop drawings shall be corrected to reflect actual field changes and shall be submitted to the Architect.

- J. Welding certificates.
- K. Delivery Tags: Delivery tags for all concrete.
- L. Batch Plant Inspection Waiver: When batch plant inspection waiver is requested, evidence of compliance shall be submitted to, and approved by, the Governing Agency; refer to requirements in Part 3 Article "Field Quality Control."

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs on Project personnel who shall be thoroughly familiar with the specified requirements, completely trained and experienced in the necessary skills required for work performed under this Section. In actual installation of the work of this Section, use adequate numbers of skilled workmen to insure installation in strict accordance with the contract documents design.
- B. Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - Manufacturer shall be certified in accordance with NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Testing Agency: An independent agency retained by the Owner, acceptable to the Architect, and qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
- D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
- E. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M, "Structural Welding Code Reinforcing Steel."
- F. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5.
 - 2. ACI 318-14, "Building Code Requirements for Structural Concrete" with amendments per 2019 California Building Code, Chapter 19A, Section 1905A.
 - 3. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- G. Mockups: Cast concrete slab-on-grade panels to demonstrate typical joints, surface finish, texture, tolerances, floor treatments, and standard of workmanship.
 - 1. Build panel approximately 200 sq. ft. for slab-on-grade in the location indicated or, if not indicated, as directed by Architect.
 - 2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

- H. Pre-installation Conference: Conduct conference at Project site.
 - 1. Review the following:
 - a. Special inspection and testing and inspecting agency procedures for field quality control.
 - b. Construction joints, control joints, isolation joints, joint-filler strips, and semi-rigid joint fillers.
 - c. Vapor-retarder installation.
 - d. Steel reinforcement installation.
 - e. Anchor rod and anchorage device installation tolerances.
 - f. Cold and hot weather concreting procedures.
 - g. Concrete finishes and finishing.
 - h. Curing procedures.
 - i. Forms and form-removal limitations.
 - j. Shoring and reshoring procedures.
 - k. Methods for achieving specified floor and slab flatness and levelness.
 - I. Floor and slab flatness and levelness measurements.
 - m. Concrete repair procedures.
 - n. Concrete protection.
 - o. Initial curing and field curing of field test cylinders (ASTM C31/C31M.)
 - p. Protection of field cured field test cylinders.
 - q. Concrete mixtures, finishing, curing and protection of slabs to receive a polished finish.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.
 - 1. Identification: Bundle and tag reinforcing steel with grades and suitable identification marks for checking, sorting and placing. Use waterproof tags and markings and do not remove until steel is in place.

1.7 COORDINATION

A. Slab Finishes: Coordinate slab finish requirements with trades installing or applying floor finishes or treatments over slabs. Finishes shall include but not be limited to concrete sealing, polishing, topical concrete vapor control barrier, ceramic tile, resinous/fluid applied floor systems, adhered resilient floor systems, and adhered carpet.

PART 2 - PRODUCTS

2.1 FORM MATERIALS

A. Earth Forms: Use for sides of footings only where soil is firm and stable and concrete will not be exposed. Where earth forms are used, cut excavations neat and accurate to

- size for placing concrete directly against the excavation.
- B. Rough-Formed Finished Concrete: Use for formed concrete that will not be exposed in the finished work, fabricate forms of plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Smooth-Formed Finished Concrete: Use for formed concrete that will be exposed in the finished work, fabricate forms of form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Plywood, metal, or other approved panel materials.
- D. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch, minimum.
- E. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that will produce surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.
- F. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inch to the plane of exposed concrete surface.
 - 2. Furnish ties that, when removed, will leave holes no larger than 1 inch in diameter in concrete surface.
- G. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
- B. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.
- C. Plain-Steel Wire: ASTM A 82/A 82M, as drawn.
- D. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, plain, fabricated from as-drawn steel wire into flat sheets.
- E. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60, plain-steel bars, cut true to length with ends square and free of burrs.
- F. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar

supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:

- 1. Slabs on Grade and Foundations: Use precast concrete blocks, plastic-coated steel with bearing plates or specifically designed wire-fabric supports fabricated of plastic. Precast blocks shall be not less than 3 inches by 3 inches square and shall have a compressive strength equal to or greater than the strength of the surrounding concrete.
- 2. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.
- G. Fabricating Reinforcement: Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice" or ACI SP-66 and the details shown on the Drawings.
 - 1. In the case of fabricating errors, do not rebend or straighten reinforcement in a manner that will damage or weaken the material.
 - 2. Bends shall be made cold using pin sizes as recommended ACI 318 as modified by T24, CCR, Part 2.
 - 3. Unacceptable Work: Reinforcement with any of the following defects will not be permitted:
 - a. Bar lengths, depths, and bends exceeding specified fabrication tolerance.
 - b. Bends or kinks not indicated on the project Drawings or the final Shop Drawings.
 - c. Bars with reduced cross-section due to excessive rusting or other cause.

2.3 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C 150, Type II, gray.
 - a. Fly Ash: ASTM C 618, Class F. The use of a quality fly ash will be permitted as a cement-reducing admixture up to a maximum of 15% of the weight of portlandcement.
- B. Normal-Weight Aggregates: ASTM C 33, Class 3M coarse aggregate or better, graded. Provide aggregates from a single source.
 - Where concrete expansion from alkali silica or alkali carbonate reactions is anticipated, provide aggregate with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials.
 - 2. Fine and coarse aggregates shall be regarded as separate ingredients. Each size of coarse aggregate, as well as the combination of sizes when two or more are used, shall conform to the grading requirements of ASTM C33.
 - 3. Coarse aggregate: Coarse aggregate shall consist of a clean, hard, fine grained, sound crushed rock, or washed gravel or a combination of both. It shall be free from oil, organic matter, or other deleterious substances. Aggregate shall be

- uniformly graded from one-quarter inch size to maximum size.
- 4. The maximum size of aggregates used in the project shall be consistent with the dimensions and form of the section being placed, the location and spacing of the reinforcing bars, and with the method of compaction, and shall be such as will produce dense and uniform concrete free from rock pockets, honey-comb and other irregularities. The nominal maximum size of the aggregate shall not be more than one-fifth the narrowest dimension between forms, one-third the depth of slabs nor three-fourths the minimum clear spacing between reinforcing bars.
- 5. Combined Grading: The combined grading shall be such that the percentage by weight of the combined aggregates shall fall within the limits established as follows:

Sieve number or size	Percentage by Weight		
in inches (maximum)	1-1/2"	1"	3/4"
Passing a 2 inch			
Passing a 1-1/2 inch	95-100		
Passing a 1 inch	70-90	90-100	
Passing a 3/4 inch	50-80	70-95	90-100
Passing a 3/8 inch	40-60	45-70	55-75
Passing a No. 4	35-55	35-55	40-60
Passing a No. 8	25-40	27-45	30-46
Passing a No. 16	16-34	20-38	23-40
Passing a No. 30	12-25	12-27	13-28
Passing a No. 50	2-12	5-15	5-15
Passing a No. 100	0-3	0-5	0-5

- 6. Special grading or size limitations: When reviewed and approved by the Architect, other gradings or maximum size limitations may be used if mixes are designed and tested in accordance with the concrete mixture specified in the "Concrete Mixtures" Article.
- 7. Soundness of Aggregates: Both the coarse and fine aggregate shall be tested by the use of a solution of sodium or magnesium sulfate, or both, whenever in the judgment of the Architect, such tests are necessary to determine the quality of the material. Such tests shall be performed in accordance with ASTM C88 and the results shall show compliance with the limits set forth in ASTM C33.
- 8. Reactivity: Aggregates shall be free from any substance which may be deleteriously reactive with the alkalies in the cement in an amount sufficient to cause excessive expansion of the concrete or which will interfere with normal hydration of the cement. Acceptability of the aggregate shall be based upon satisfactory evidence that the aggregate is free from such materials.
- 9. Aggregates shall be tested, when required by the Architect prior to the concrete mix being established, in accordance with the following specifications:

Test	Specification
Abrasion	ASTM C131 and C535
Gradation	ASTM C136
Alkali Reactivity	ASTM C289 and C227
Organic	ASTM C40
Impurities	

Clay Lumps ASTM C142	
----------------------	--

- 10. Maximum Coarse-Aggregate Size: Nominal size as indicated on Drawings.
- 11. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Water: ASTM C 94/C 94M and potable.

2.4 ADMIXTURES

- A. Admixtures shall be reviewed and approved by the Architect and the Division of the State Architect.
- B. Admixtures for concrete slabs to receive a polished finish shall be limited to, and coordinated with, Division 03 Section "Polished Concrete Finishing."
- C. Calcium chloride, thiocyanates or admixtures containing more than 0.05% chloride ions are not permitted.
- D. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Certification of requirements and chloride ion content is required from the admixture manufacturer prior to mix design review.
 - 1. Air-entraining Admixture: ASTM C260.
 - a. Available Products: Subject to compliance with requirements, provide one of the following products:
 - 1) Euclid Chemical Company (The); Air Mix.
 - 2) BASF/Master Builders, Inc.; Micro-Air.
 - 3) Sika Corporation; Sika AER.
 - 2. Water-reducing Admixtures: ASTM C494 Type A.
 - a. Available Products: Subject to compliance with requirements, provide one of the following products:
 - 1) Euclid Chemical Company (The); Eucon WR-75.
 - 2) BASF/Master Builders Inc.; Pozzolith 220N.
 - 3) Sika Corporation; Plastocrete 161.
 - 3. Water-reducing, Retarding Admixtures: ASTM C494 Type D.
 - a. Available Products: Subject to compliance with requirements, provide one of the following products:
 - 1) Euclid Chemical Company (The); Eucon Retarder-75.
 - 2) BASF/Master Builders Inc.; Pozzolith 300 R.
 - 3) Sika Corporation; Plastiment.
 - 4. High Range Water-Reducing Admixture (HRWR): ASTM C494 type F or G.
 - a. Available Products: Subject to compliance with requirements, provide one of the following products:

- 1) Euclid Chemical Company (The); Eucon 37.
- 2) BASF/Master Builders Inc.; Rheobuild 1000.
- 3) Sika Corporation; Sikament 300.
- b. When more than 30 minutes is required between the addition of admixtures to final placement of the concrete, a combination of water-reducing, set controlling admixtures (ASTM C494, Types A, D and E) may be used.
- 5. Non-Corrosive, Non-Chloride Accelerator: ASTM C494 Type C or E.
 - a. Available Products: Subject to compliance with requirements, provide one of the following products:
 - 1) Euclid Chemical Company (The); Accelguard 80.
 - 2) BASF/Master Builders Inc.; Pozzutec 20+.
 - 3) Sika Corporation, Plastocrete 161FL.
 - b. The admixture manufacturer shall have long-term (more than one year duration) non-corrosive test data on metal deck and reinforcing steel from an independent testing laboratory using an acceptable accelerated corrosion test method such as using electrical potential measures.

2.5 FIBER REINFORCEMENT

- A. Synthetic Micro-Fiber: Fibrillated polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III, manufacturer's standard graded fiber length.
 - 1. Basis of Design: Drawings and Specifications are based on the following:
 - a. Propex Concrete Systems Corp.; Fibermesh 300.
 - Subject to compliance with requirements, provide the product indicated or a one of the following comparable products:
 - a) Euclid Chemical Company (The), an RPM company; Fiberstrand F.
 - b) Grace Construction Products, W. R. Grace & Co.; Grace Fibers.
 - c) Sika Corporation; Sika Fiber PPF.
- B. Fiber reinforcement shall not be used in slabs that are to be left exposed and/or polished.

2.6 CURING AND SEALING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Construction Chemicals Building Systems; Confilm.
 - b. ChemMasters; SprayFilm.

- c. Conspec by Dayton Superior: Aquafilm.
- d. Dayton Superior Corporation; Sure Film (J-74).
- e. Edoco by Dayton Superior; BurkeFilm.
- f. Euclid Chemical Company (The), an RPM company; Eucobar.
- g. Lambert Corporation; LAMBCO Skin.
- h. L&M Construction Chemicals, Inc.; E-CON.
- i. Meadows, W. R., Inc.; EVAPRE.
- j. Sika Corporation; SikaFilm.
- k. Symons by Dayton Superior; Finishing Aid.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
- C. Moisture-Retaining Cover: ASTM C 171, clear or white polyethylene film, 6 mil minimum thickness, or white burlap-polyethylene sheet.
- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Construction Chemicals Building Systems; Kure 200.
 - b. ChemMasters; Safe-Cure Clear.
 - c. Conspec by Dayton Superior; W.B. Resin Cure.
 - d. Dayton Superior Corporation; Day-Chem Rez Cure (J-11-W).
 - e. Edoco by Dayton Superior; Res X Cure WB.
 - f. Euclid Chemical Company (The), an RPM company; Kurez W VOX; TAMMSCURE WB 30C.
 - g. L&M Construction Chemicals, Inc.; L&M Cure R.
 - h. Meadows, W. R., Inc.; 1100-CLEAR.
 - i. Symons by Dayton Superior; Resi-Chem Clear.
 - 2. Curing compounds are subject to removal after curing period has elapsed; refer to Part 3 Article "Concrete Protecting and Curing."
- F. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Construction Chemicals Building Systems; Kure 1315.
 - b. ChemMasters; Polyseal WB.
 - c. Conspec by Dayton Superior; Sealcure 1315 WB.
 - d. Edoco by Dayton Superior; Cureseal 1315 WB.
 - e. Euclid Chemical Company (The), an RPM company; Super Diamond Clear VOX; LusterSeal WB 300.
 - f. Meadows, W. R., Inc.; Vocomp-30.
 - g. Symons by Dayton Superior; Cure & Seal 31 Percent E.
 - 2. VOC Content: Curing and sealing compounds shall have a VOC content of

200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 VAPOR RETARDERS

A. Sheet Vapor Retarder: As specified in Division 07 Section "Underslab Vapor Retarder," ASTM E 1745, Class A, 15 mil thickness minimum.

2.8 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.
- B. Semi-rigid Joint Filler: Two-component, semi-rigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 per ASTM D 2240.
- C. Bonding Agent: ASTM C 1059/C 1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements.

2.9 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4100 psi at 28 days when tested according to ASTM C 109/C 109M.
- B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.

4. Compressive Strength: Not less than 5000 psi at 28 days when tested according to ASTM C 109/C 109M.

2.10 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301, ACI 318, Chapter 26, and Chapter 19A of the California Building Code.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
 - a. The testing agency used for preparing mixture designs shall be different from the testing agency retained by the Owner for testing concrete strength and materials.
- B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash: 15 percent, limit fly ash to 10% maximum for concrete floor slabs to receive a polished finish.
- C. Limit water-soluble, chloride-ion content in hardened concrete to the following percentages by weight of cement.
 - 1. Reinforced concrete exposed to chloride in service: 0.15 percent.
 - 2. Reinforced concrete that will be dry or protected from moisture in service: 1.00 percent.
 - 3. Other reinforced concrete: 0.30 percent.
- D. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing, high-range water-reducing, or plasticizing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete and concrete with a water-cementitious materials ratio below 0.50.

2.11 CONCRETE MIXTURES FOR BUILDING ELEMENTS

- A. Proportion normal-weight concrete mixture as indicated on Drawings for strength, slump, water/cement ratio, and maximum aggregate size.
 - 1. Strength: 3500 psi at 28 days.
 - 2. Aggregate Size: 1-1/2 inch maximum.
 - 3. Slump: 5 inches.
 - 4. Water Cement Ratio: 0.53 Maximum.

2.12 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M [and ASTM C 1116/C 1116M], and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.
- B. Project-Site Mixing: Project site mixing of structural concrete will not be permitted. Project site mixing of concrete for other purposes may be permitted only when reviewed and approved by the Architect. When allowed, measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M and ACI 318. Mix concrete materials in appropriate drum-type batch machine mixer, the capacity of the mixer shall be such that it will handle one or more full sack batches

C. Control of Admixtures:

- Admixtures shall be charged into the mixer as solutions and shall be measured by means of an approved mechanical dispensing device. The liquid shall be considered a part of the mixing water. Admixtures that cannot be added in solution may be weighed or may be measured by volume if so recommended by the manufacturer.
- 2. If two or more admixtures are used in the concrete, they shall be added separately to avoid possible interaction that might interfere with the efficiency of either admixture or adversely affect the concrete.
- 3. Addition of retarding admixtures shall be completed within 1 minute after addition of water to the cement has been completed, or prior to the beginning of the last three-quarters of the required mixing, whichever occurs first.
- 4. Admixtures shall be used in accordance with the manufacturer's instructions.
- D. Concrete shall be mixed only in quantities for immediate use. Concrete which has set shall not be retempered and shall be discarded.
- E. When concrete arrives at the project with slump below that suitable for placing, as indicated by the specifications, water may be added only if neither the maximum permissible water-cement ratio nor the maximum slump is exceeded. The water shall be incorporated by additional mixing equal to at least half of the total mixing required. An addition of water shall be accompanied by a quantity of cement sufficient to maintain the proper water-cement ratio. Such addition shall be reviewed by the Architect.

PART 3 - EXECUTION

3.1 FORMWORK

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
 - 1. Where earth is used for forming sides of footings, increase the width of footings by 1 inch on each side of the footing.
- C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inch for smooth-formed finished surfaces.
 - 2. Class B, 1/4 inch for rough-formed finished surfaces.
- D. Construct forms tight enough to prevent loss of concrete mortar.
- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete.
- I. Form openings, chases, offsets, sinkages, keyways, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

 Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."

B. Conduits and Pipes Embedded in Concrete:

- 1. Pipes, other than conduits for electrical circuits, shall not be embedded in structural concrete unless specifically reviewed and approved by the Architect and the Division of the State Architect. Any pipe or conduit may pass through any walls or floor slab by means of a sleeve so located that it does not impair the strength of the structure. Openings larger than 12 inches in any dimension shall be as detailed on the structural plans.
- Unless otherwise approved, embedded pipes or conduits, other than those merely
 passing through, shall be not larger in outside dimension than one-third the thickness of
 the slab, wall, or beam in which they are embedded, nor shall they be spaced closer
 than three diameters or widths on center and shall have at least 1-1/2 inches concrete
 cover.
- 3. Sleeves, pipes, or conduits of aluminum shall not be embedded in structural concrete unless effectively coated or covered to prevent aluminum-concrete reaction or electrolytic action between aluminum and steel.

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete must be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 VAPOR RETARDERS

A. Vapor retarders shall be installed in accordance with the requirements of Division 07 Section "Underslab Vapor Retarder."

3.5 STEEL REINFORCEMENT

- A. Quality Control: Reinforcement steel and placement shall be subject to inspection and testing per Part 3 Article "Field Quality Control."
- B. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.

- 1. Coordinate installation of steel reinforcement with installation of vapor barrier specified in Division 07 Section "Underslab Vapor Retarder."
- 2. Do not cut or puncture vapor retarder; if cut or damaged, vapor barrier shall be repaired in accordance with Division 07 Section "Below Grade Vapor Retarder."
- C. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.
- D. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
- E. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

3.6 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
 - a. Sawn and filled joints shall be used in exposed, polished concrete slabs.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.

- 2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface where joint sealants, specified in Division 07 Section "Joint Sealants," are indicated.
- 3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.7 CONVEYING

- A. Concrete shall be handled from the mixer to the place of final deposit as rapidly as practicable by methods which will prevent segregation or loss of ingredients and in a manner which will assure that the required quality of the concrete is maintained.
- B. Conveying equipment shall be of a size and design such that detectable setting of concrete shall not occur before adjacent concrete is placed. Conveying equipment shall be cleaned at the end of each operation or work day. Conveying equipment and operations shall conform to the following additional requirements:
 - 1. Truck mixers, agitators and non-agitating units and their manner of operation shall conform to the applicable requirements of ASTM C94.
 - 2. Belt conveyors shall be horizontal or at a slope which will not cause excessive segregation or loss of ingredients. Concrete shall be protected against undue drying or rise in temperature. A suitable device shall be used at the discharge end to prevent apparent segregation. Mortar shall not be allowed to adhere to the return length of the belt. Long runs shall be discharged into a hopper or through a baffle.
 - 3. Do not use reinforcement or reinforcement supports to support runways for concrete conveying equipment.
- C. Chutes shall be metal or metal-lined and shall have a slope not exceeding 1 vertical to 2 horizontal and not less than 1 vertical to 3 horizontal. Chutes more than 20 feet long and chutes not meeting the slope requirements may be used provided they discharge into a hopper before distribution.
- D. Pumping or pneumatic conveying equipment shall be of suitable kind with adequate pumping capacity. Pneumatic placement shall be controlled so that segregation is not apparent in the discharged concrete. The loss of slump in pumping or pneumatic conveying equipment shall not exceed 2 inches. Concrete shall not be conveyed through pipe made of aluminum or aluminum alloy. When the concrete is placed into final position by means of pumping, the pumping method for placing concrete shall be reviewed and approved by the Architect and the Division of the State Architect at least one week prior to placing the concrete.

3.8 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
 - 1. Reposition any misaligned reinforcement.
- B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect.
- C. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 - 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- D. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleed water appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
- E. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

- F. Hot-Weather Placement: Comply with ACI 305 and as follows:
 - 1. Maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

3.9 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not permanently exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces permanently exposed to public view, to receive a rubbed finish, or to be covered with a coating or covering material applied directly to concrete.
- C. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.10 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Finishing of concrete floor slabs to receive a polished finish shall be coordinated with division 03 Section "Polished Concrete Finishing."

C. Slab Finishes: Provide finished slab surfaces as indicated below; confirm and coordinate surface finishes for adhered and fluid applied floor finishes with trades installing/applying respective floor systems required for the project conditions.

	Finish Floor Application	Slab Finish Type
1.	Surfaces to receive mortar setting beds for tile flooring and similar applications.	Scratch Finish
2.	Surfaces to receive thinset tile flooring directly over concrete	Trowel and Fine Broom Finish
3.	Surfaces to receive adhered carpet, resilient sheet, or resilient tile flooring	Trowel and Fine Broom Finish
4.	Surfaces to receive epoxy or polyurethane fluid applied flooring	Light Broom Finish (Confirm with floor system manufacturer)
5.	Surfaces to be exposed and sealed concrete	Troweled Finish
6.	Ramped exposed concrete	Medium Broom Finish
7.	Surfaces to receive waterproof membranes	Floated Finish
8.	Surfaces to receive a polished finish; Coordinate with Division 03 Section "Polished Concrete Finishing."	Smooth trowel finish, not burned

D. Slab Flatness (F_F) and Levelness (F_L): Provide finished slab flatness and levelness as indicated below; confirm and coordinate surface finishes for floor finishes with trades installing/applying respective floor systems required for the project conditions.

	Application		Flatness (F _F)	Levelness (F _L)
1.	Multi-Use Room (Assembly Space)	Overall: Local:	40 28	30 22
2.	Classrooms (Other than polished concrete floor areas)	Overall: Local:	30 24	25 15
3.	Slabs to receive polished concrete finish, Coordinate with Division 03 Section "Polished Concrete Finishing."	Overall: Local:	50 40	30 20
4.	Slabs to receive resilient flooring	Overall: Local:	30 24	25 15
5.	Slabs to receive carpet flooring	Overall: Local:	25 17	20 15

6. Other areas not specified Overall: 25 Local: 17
--

- E. Sloped Slab Finishes: Where slabs are indicated to be sloped, finished slabs shall have a slope not to exceed 1/4 inch per one foot unless otherwise indicated on the Drawings.
- F. Slab Finish Types: Slab finish types shall be as follows:
 - 1. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch in one direction.
 - 2. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and re-straightening until surface is left with a uniform, smooth, granular texture. Apply float finish to surfaces to receive trowel finish and to be covered with fluid-applied or sheet waterproofing.
 - 3. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 4. Trowel and Fine-Broom Finish: After applying a trowel finish and while concrete is still plastic, slightly scarify surface with a fine broom to produce a fine directional finish.
 - 5. Broom Finish: Immediately after float finishing, slightly roughen surface by brooming with fiber-bristle broom perpendicular to main traffic route and/or ramp surfaces. Coordinate required final finish with Architect before application.

3.11 MISCELLANEOUS CONCRETE ITEMS

- A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with inplace construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates from manufacturer furnishing machines and equipment.

3.12 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 305 for

- hot-weather protection during curing.
- B. Curing of Polished Concrete Floor Slabs: Curing and sealing compounds shall not be used on concrete floor slabs to receive a polished finish. Curing of concrete floor slabs that are to receive a polished finish shall be coordinated with Division 03 Section "Polished Concrete Finishing."
- C. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- D. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.
- E. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- F. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - Moisture Curing: Keep surfaces continuously moist for not less than seven days using a water saturated absorptive cover kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 - a. This method shall not be used on floor slabs receiving adhered floor systems, fluid applied floor systems, or sealers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 - a. Use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 - b. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound will not interfere with bonding of floor covering used on Project.

4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.13 LIQUID FLOOR TREATMENTS

A. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.

3.14 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Defer joint filling as long as possible and until concrete has aged at least one month. Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install semi-rigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.15 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete.
 - a. Limit cut depth to 3/4 inch.
 - b. Make edges of cuts perpendicular to concrete surface.
 - c. Perimeters of cut areas shall be square or rectangular in shape with cuts vertical and horizontal.
 - d. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried.

- e. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
- 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
- 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 - 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
 - 6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
 - 7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.

F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.16 FIELD QUALITY CONTROL

- A. Testing and Inspecting Agency: Owner will engage and pay for a qualified independent testing and inspecting agency to perform tests and inspections as applicable and prepare reports.
 - 1. Testing and Inspection Agency shall be acceptable to the Architect and the Division of the State Architect.
- B. The Architect and the Division of the State Architect shall have the right to order the testing of any materials used in the concrete construction to determine if they are of the quality specified.
- C. Contractor Responsibilities:
 - 1. The Contractor shall maintain control of the quality of materials and workmanship in order to conform with the drawings and specifications.
 - 2. To facilitate testing and inspection, the Contractor shall:
 - a. Schedule tests and inspections with the Testing and Inspection Agency sufficiently in advance of operations to allow for the assignment of personnel and for the completion of testing and inspecting responsibilities.
 - b. Provide access to the Work for the designated Testing and Inspection Agency.
 - c. Furnish all necessary materials and labor to assist the designated Testing and Inspection Agency in obtaining and handling samples at the project or other sources of materials.
 - d. Provide and maintain for the sole use of the Testing and Inspection Agency adequate facilities for safe storage and proper curing of concrete test specimens on the project site for the first 24 hr. as required by ASTM C31.
 - 3. The Contractor shall correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

D. Testing and Inspection Services:

- Testing and inspections shall be in accordance with the 2022 California Building Code, Section 1705A.3 and Table 1705A.3, DSA Statement of Structural Tests and Inspections form DSA 103, Structural Drawings Special Inspection Criteria, and shall include but not be limited to the following:
 - a. Inspection of steel reinforcement.
 - b. Inspection of headed bolts and studs prior and during concrete placement.
 - c. Verification of use of required design mixture.
 - d. Sampling of concrete for strength tests, slump, air content, and temperature of concrete at time of placement.
 - e. Inspection of concrete placement, including conveying and depositing.
 - f. Inspection of curing procedures and maintenance of curing temperature.

- g. Verification of concrete strength before removal of shores and forms from beams and slabs.
- h. Inspection of formwork.
- E. Sampling and Testing of Steel Reinforcement:
 - 1. Samples of reinforcing steel shall be taken by a designated approved testing agency at place of distribution prior to shipment or at project site.
 - 2. Where samples are taken from bundles as delivered from the mill, with the bundles identified as to heat number and provided the mill analyses accompany the report, one tensile test and one bend test shall be made from a specimen from each 10 tons or fraction thereof of each size of reinforcing steel.
 - a. Where positive identification of the heat number cannot be made or where random samples are to be taken, one series of tests shall be made from each 2-1/2 tons or fraction thereof of each size of reinforcing steel.
 - 3. Each sample shall consist of no fewer than two pieces, each 18 inches long, of each size and grade or reinforcing steel.
- F. Batch Plant Inspection: The quality and quantity of materials used in transit mixed concrete and in batched aggregates shall be continuously inspected at the location where materials are measured by an approved Testing and Inspection Agency.
 - 1. Waiver of Batch Plant Inspection: Batch plant inspection will not be required under the following conditions:
 - a. The concrete plant complies fully with the requirements of ASTM C94, Sections 8 and 9, and has a current certificate from the National Ready Mixed Concrete Association. The certification shall indicate that the plant has automatic batching and recording capabilities.
 - b. The Testing Agency shall check the first batching at the start of work and furnish mix proportions to the licensed weighmaster.
 - c. Licensed weighmaster shall positively identify materials as to quantity and certify to each load by a ticket.
 - d. Tickets shall be transmitted to the Contractor by cement truck driver with load identified thereon. Do not accept loads without a load ticket identifying the mix; Contractor shall keep a daily record of placements identifying each truck, its load and time of receipt, and approximate location of deposit in the structure and will transmit a copy of the daily record to the Architect.
 - e. At the end of the project, the weighmaster shall furnish an affidavit to the Architect certifying that all concrete furnished conforms in every particular to proportions established by mix designs.
 - f. The Testing Agency shall certify and submit evidence of compliance to the governing agency Division of the State Architect and obtain governing agency's approval prior for a waiver of batch plant inspection prior to mixing the concrete.
- G. Placement Record: A record shall be kept on-site of the time and date of placing the concrete in each portion of the structure. Such record shall be kept until the completion of the structure and shall be open to the inspection of the governing agency (Division of the State Architect).

- H. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture but not less than one sample for each 50 cu. yd. or fraction thereof and one sample for each 2,000 square feet of slab area.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 3. Air Content: ASTM C 231, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.
 - 5. Compression Test Specimens: ASTM C 31/C 31M.
 - a. Cast and laboratory cure four standard cylinder specimens for each composite sample.
 - 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at 7 days for information and two cured specimens at 28 days for strength acceptance, the fourth specimen shall be held in reserve in case additional testing in necessary.
 - A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.
 - 7. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
 - 8. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7 and 28-day tests.
 - 9. Non-destructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
 - 10. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of

- concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.
- 11. Additional testing and inspecting will be performed to determine compliance of replaced or additional work with specified requirements.
 - a. The cost of additional testing and inspection of replaced work will be paid for by the Owner with the amount being deducted from the Contract Amount by a Change Order.

3.17 PROTECTION OF SEALED FLOORS

A. Protect sealed floor surfaces from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by floor treatment installer.

END OF SECTION

SECTION 220000 GENERAL PLUMBING PROVISIONS

PART 1 - GENERAL

1.1 GENERAL CONDITIONS

A. The preceding General Conditions shall form a part of this Section with the same force and effect as though repeated here. The provisions of this Section shall also apply to Division 22 of these Specifications and shall be considered a part of that Divisions.

1.2 CODES AND REGULATIONS

A. All work and materials shall be in accordance with current rules and regulations of applicable codes. Nothing in these Drawings or Specifications is to be construed to permit work not conforming to these codes. Should the Drawings or Specifications call for material or methods of construction of a higher quality or standard than required by these codes, the Drawings and Specifications shall govern. Applicable codes and regulations include, but are not necessarily limited to, the following:

1.3 DEFINITIONS

- A. Provide: The term "provide" as used in these specifications or on the drawings shall mean furnish and install.
- B. Piping: The term "piping" as used in these specifications or on the drawings shall mean all pipe, fittings, valves, hangers, insulation, etc. as may be required for a complete and functional system.
- C. Ductwork: The terms "duct" or "ductwork" as used in these specifications or on the drawings shall mean all ducts, fittings, joints, dampers, hangers, insulation, etc. as may be required for a complete and functional system.
- D. Wiring: The term "wiring" as used in these specifications or on the drawings shall mean all wiring, conduit, boxes, connections, transformers, relays, switches etc. as may be required for a complete and functional system.

1.4 PERMITS AND FEES

A. The Contractor shall take out all permits and arrange for all tests in connection with his work as required. All charges are to be included in the work.

1.5 COORDINATION OF WORK

- A. Examination: Before starting work, thoroughly examine existing and newly completed underlying and adjoining work and conditions on which the installation of this work depends. Report to the Engineer in writing all conditions which might adversely affect this work.
- B. Layout: Layout of materials, equipment and systems is generally diagrammatic unless specifically dimensioned. Some work may be shown offset for clarity. The actual locations of all materials, piping, ductwork, fixtures, equipment, supports, etc. shall be carefully planned prior to installation of any work in order to avoid all interference with each other, or with structural, electrical, architectural or other elements.
- C. Verification: If discrepancies are discovered between drawing and specification requirements, the more stringent requirement shall apply. All conflicts shall be called to the attention of the Engineer prior to the installation of any work or the ordering of any equipment. No work shall be prefabricated or installed prior to this coordination. No costs will be allowed to the Contractor for any prefabrication or installation performed prior to this coordination. Verify the proper voltage and phase of all equipment with the electrical plans.
- D. Location of Utilities Prior to Trenching or Earthwork: The Contractor shall notify the Owner a minimum of two business days prior to beginning trenching or Prior to this notification, the Contractor shall have marked all earthwork. proposed trenches with paint and shall have contacted a utility locating company and have had this company mark all found underground utilities with paint. The Contractor shall then coordinate and arrange for a site visit with the Owner to review the proposed trenching and/or earthwork areas. Trenching and/or earthwork shall not begin until the Owner agrees. Repair and/or compensation for repair of marked utilities is the responsibility of the Contractor. The Owner retains the right to either self-perform the repair or require the Contractor to complete the repair, as directed by the Owner. If while performing the work, the Contractor discovers utilities that have not been marked, the Contractor shall immediately notify the Owner verbally and in writing.

1.6 GUARANTEE

A. Guarantee shall be in accordance with the General Conditions. The Contractor shall repair any defects due to faulty materials or workmanship and pay for any resulting damage to other work which appears within the guarantee period. These Specifications may extend the period of the guarantee for certain items. Where such extensions are called for, or where items are normally provided with guarantee periods in excess of that called for in the General Conditions, the certificate of guarantee shall be furnished to the Owner through the Engineer.

1.7 QUIETNESS

A. Piping, ductwork and equipment shall be arranged and supported so that vibration is a minimum and is not transmitted to the structure.

1.8 DAMAGES BY LEAKS

A. The Contractor shall be responsible for damages caused by leaks in the temporary or permanent piping systems prior to completion of work and during the period of the guarantee, and for damages caused by disconnected pipes or fittings, and the overflow of equipment prior to completion of the work.

1.9 EXAMINATION OF SITE

A. The Contractor shall examine the site, compare it with Plans and Specifications, and shall have satisfied himself as to the conditions under which the work is to be performed. No allowance shall subsequently be made in his behalf for any extra expense to which he may be put due to failure or neglect on his part to make such an examination.

1.10 COMPATIBILITY WITH EXISTING SYSTEMS

A. Any work which is done as an addition, expansion or remodel of an existing system shall be compatible with that system.

1.11 MATERIALS AND EQUIPMENT

A. Materials and equipment shall be new unless otherwise noted. Materials and equipment of a given type shall be by the same manufacturer. Materials and equipment shall be free of dents, scratches, marks, shipping tags and all defacing features at time of project acceptance. Materials and equipment shall be covered or otherwise protected during construction as required to maintain the material and equipment in new factory condition until project acceptance.

1.12 SUBMITTALS

A. Shop Drawings: Within 30 days of contract award, the Contractor shall submit six copies of shop drawings for all materials, equipment, etc. proposed for use on this project. Material or equipment shall not be ordered or installed until written review is processed by the Engineer.

All shop drawings must comply with the following:

- Shop drawings are required for all material and equipment items and shall include manufacturer's name and catalog numbers, dimensions, capacities, performance curves, and all other characteristics and accessories as listed in the specifications or on the drawings. Descriptive literature shall be current factory brochures and submittal sheets. Capacities shall be certified by the factory. FAX submittals are not acceptable.
- 2. All shop drawings shall be submitted at one time in a neat and orderly fashion in a suitable binder with title sheet including Project, Engineer and Contractor, table of contents, and indexed tabs dividing each group of materials or item of equipment. All items shall be identified by the specification paragraph number for which they are proposed. All equipment shall also be identified by the mark number as indicated on drawings.
- 3. All capacities, characteristics, and accessories called for in the specifications or on the drawings shall be high-lighted, circled or underlined on the shop drawings. Calculations and other detailed data indicating how the item was selected shall be included for items that are not scheduled. Data must be complete enough to permit detailed comparison of every significant characteristic which is specified, scheduled or detailed.
- B. Substitutions: Manufacturers and model numbers listed in the specifications or on the drawings represent the standard of quality and features desired. Proposed substitutions shall comply with the Owner's General Requirements. Calculations and other detailed data indicating how the item was selected shall be included. The Contractor shall assume full responsibility that substituted items or procedures will meet the specifications and job requirements and shall be responsible for the cost of redesign and modifications to the work caused by these items. At the Engineer's request, furnish locations where equipment similar to the substituted equipment is installed and operating along with the user's phone numbers and contact person. Satisfactory operation and service history will be considered in the acceptance or rejection of the proposed substitution.

C. Review: Submittals will be reviewed for general conformance with the design concept, but this review does not guarantee quantity shown, nor does it supersede the responsibility of the Contractor to provide all materials, equipment and installation in accordance with the drawings and specifications. The Contractor shall agree that shop drawing submittals processed by the Engineer are not Change Orders; that the purpose of shop drawing submittals by the Contractor is to demonstrate to the Engineer that the Contractor understands the design concept, that he demonstrates his understanding by indicating which equipment and material he intends to furnish and install and by detailing the fabrication and installation methods he intends to use. The Contractor shall agree that if deviations, discrepancies or conflicts between shop drawings and design drawings and specifications are discovered either prior to or after shop drawing submittals are processed by the Engineer, the design drawings and specifications shall control and shall be followed. If a resubmittal is required, submit a complete copy of the Engineer's review letter requiring such with the resubmittal.

1.13 MANUFACTURER'S RECOMMENDATIONS

A. All material, equipment, devices, etc., shall be installed in accordance with the recommendations of the manufacturer of the particular item. The Contractor shall be responsible for all installations contrary to the manufacturer's recommendations. The Contractor shall make all necessary changes and revisions to achieve such compliance. Manufacturer's installation instructions shall be delivered to and maintained at the job site through the construction of the project.

1.14 SCHEDULING OF WORK

A. All work shall be scheduled subject to the review of the Engineer and the Owner. No work shall interfere with the operation of the existing facilities on or adjacent to the site. The Contractor shall have at all times, as conditions permit, a sufficient force of workmen and quantity of materials to install the work contracted for as rapidly as possible consistent with good work, and shall cause no delay to other Contractors engaged upon this project or to the Owner. HVAC equipment and functions, whether existing or new, shall be maintained in operating condition whenever the facility is occupied, unless otherwise approved by the Owner.

1.15 DEMOLITION

A. Existing equipment, ducts, piping, etc. noted for removal shall be removed and delivered to the Owner at a location to be determined by the Owner. Those items determined by the Owner to be of no value shall become the property of the Contractor and shall be removed from the job site by the Contractor at the Contractor's expense. Existing piping, ducts, services, etc. requiring capping shall be capped below floors, behind walls, above ceilings or above roof unless otherwise noted. Where items are removed, patch the surfaces to match the existing surfaces.

1.16 HAZARDOUS MATERIAL REMOVAL

A. All hazardous material removal will be by the Owner. Hazardous material is to be removed before the work is started. If the Contractor discovers hazardous material which has not been removed, the Contractor shall immediately cease work in that area and promptly notify the Owner.

1.17 OPENINGS, CUTTING AND PATCHING

A. The locations and dimensions for openings through walls, floors, ceilings, foundations, footings, etc. required to accomplish the work under this Specification Division shall be provided under this Division. Except as noted below, the actual openings and the required cutting and patching shall be provided by other Divisions. Coring through existing concrete or masonry walls, floors, ceilings, foundations, footings, etc., and saw cutting of concrete floors or asphaltic concrete required to accomplish the work under this Specification Division shall be provided under this Division. Patching of these surfaces shall be provided by other Divisions. Cutting or coring shall not impair the strength of the structure. Any damage resulting from this work shall be repaired at the Contractor's expense to the satisfaction of the Engineer.

1.18 CONTINUITY OF SERVICES

A. Existing services and systems shall be maintained except for short intervals when connections are made. The Contractor shall be responsible for interruptions of services and shall repair damage done to any existing service caused by the work. If utilities not indicated on the drawings are uncovered during excavation, the Contractor shall notify the Engineer immediately.

1.19 ACCESS DOORS

A. Provide access doors as required where equipment, piping, valves, ductwork, etc. are not otherwise accessible. Access doors shall match the wall or ceiling finish and fire rating as indicated on the Architectural drawings. 16-gage steel frame and 14-gage steel door with paintable finish, except in ceramic tile, where door shall be 16-gage stainless steel with satin finish. Continuous hinge. Deliver doors to the General Contractor for installation. Milcor. Unless otherwise noted, the minimum sizes shall be as follows:

1 valve up to 1-1/2"	12" x 12"
1 valve up to 3"	16" x 16"

1.20 CONCRETE ANCHORS

A. Steel stud with expansion wedge requiring a drilled hole – powder driven anchors are not acceptable. Minimum spacing shall be 12 diameters center to center and 10 diameters center to edge of concrete. Maximum allowable stresses for tension and shear shall be 80% of the ICC Evaluation Service Report (ESR) values. Minimum concrete embedment shall be the nominal embedment listed in the ESR table. Hilti Kwik Bolt TZ2.

1.21 EQUIPMENT ANCHORING AND OTHER SUPPORTS

A. Mechanical systems (equipment, ductwork, piping, conduit, etc.) shall be anchored in accordance with the CBC. All systems mounted on concrete shall be secured with a concrete anchor at each mounting point. All air handlers shall be mounted on spring isolators. Secure base plate as indicated above. Attachment of equipment, ductwork, piping, conduit, etc. supported on curbs or platforms shall be made to the side of curbs and platforms, where possible. Where screws or lag bolts must be installed through the top of a sheet metal cap, the installation shall be as follows. Pre-drill pilot hole. Fill pilot hole with polyurethane sealant. Install screw or lag bolt with a flat washer and an EPDM washer adjacent to the sheet metal.

1.22 SUPPORTS AND SEISMIC RESTRAINTS

- A. Any structural element required to hang or support piping, ducts or equipment provided under this Division and not shown on other drawings shall be provided under this Division.
- B. Mechanical systems (equipment, ductwork, piping, etc.) shall be provided with supports and seismic restraints in accordance with the CBC. Submit anchorage calculations and details stamped and signed by a structural engineer registered in the State of California. Submit shop drawings showing location, type and detail of restraints. Submit manufacturer's data for restraints. Restraint system shall be Mason West, Inc. (OSHPD OPM 0043-13).

1.23 PAINTING

A. Paint all black iron supports, hangers, anchors, etc. with two coats of rust resisting primer. Also paint all uninsulated black iron piping exposed to weather with two coats of rust resisting primer.

1.24 ROOF PENETRATIONS AND PATCHING

A. Whenever any part of the mechanical systems penetrates the roof or exterior wall, the openings shall be flashed and counter-flashed water tight with minimum 22 gauge galvanized sheet metal. Flashing shall extend not less than eight inches from the duct, pipe, or supporting member in all directions unless detailed otherwise. All roof penetrations and patching shall be in accordance with the recommendations of the National Roofing Contractor's Association and the Owner's roofing standards.

1.25 SYSTEM IDENTIFICATION

A. Above Grade Piping: Provide markers on piping which is either exposed or concealed in accessible spaces. For piping systems, other than drain and vent lines, indicate the fluid conveyed or its abbreviation, either by pre-printed markers or stenciled marking, and include arrows to show direction of flow. Pre-printed markers shall be the type that wrap completely around the pipe, requiring no other means of fastening such as tape, adhesive, etc. Comply with ANSI A13.1 for colors. Locate markers at ends of lines, near major branches and other interruptions including equipment in the line, where lines pass through floors, walls or ceilings or otherwise pass into inaccessible spaces, and at 50' maximum intervals along exposed portions of lines. Marking of short branches and repetitive branches for equipment connections is not required.

1.26 CLEANING

A. Progressively and at completion of the job, the Contractor shall thoroughly clean all of his work, removing all debris, stain and marks resulting from his work. This includes but is not limited to building surfaces, piping, equipment and ductwork, inside and out. Surfaces shall be free of dirt, grease, labels, tags, tape, rust, and all foreign material.

1.27 OPERATION AND MAINTENANCE INSTRUCTIONS

- A. Printed: Three copies of Operation and Maintenance Instructions and Wiring Diagrams for all equipment and parts list for all faucets, trim, valves, etc. shall be submitted to the Engineer. All instructions shall be clearly identified by marking them with the same designation as the equipment item to which they apply (e.g. AC-3). All Wiring Diagrams shall agree with reviewed Shop Drawings and indicate the exact field installation. All instructions shall be submitted at the same time and shall be bound in a suitable binder with tabs dividing each type of equipment (e.g. Pumps, Fans, Motors, etc.). Each binder shall be labeled indicating "Operating and Maintenance Instructions, Project Title, Contractor, Date" and shall have a Table of Contents listing all items included.
- B. Verbal: The Contractor shall verbally instruct the Owner's maintenance staff in the operation and maintenance of all equipment and systems. The controls contractor shall present that portion of the instructions that apply to the control system. The Engineer's office shall be notified 48 hours prior to this meeting.

C. Acknowledgment: The Contractor shall prepare a letter indicating that all operation and maintenance instructions (printed and verbal) have been given to the Owner, to the Owner's satisfaction. This letter shall be acknowledged (signed) by the Owner and submitted to the Engineer.

1.28 RECORD DRAWINGS

A. The Contractor shall obtain one set of prints for the project, upon which a record of all construction changes shall be made. As the work progresses, the Contractor shall maintain a record of all deviations in the work from that indicated on the drawings. Final location of all underground work shall be recorded by depth from finished grade and by offset distance from permanent surface structures, i.e. building, curbs, walks. In addition, the water, gas, sewer, under floor duct, etc. within the building shall be recorded by offset distances from building walls. An electronic copy of the original drawings will be made available to the Contractor. The Contractor shall transfer the changes, notations, etc. from the marked-up prints to the electronic copy. The record drawings (marked-up prints, electronic drawings disc and a hard copy) shall be submitted to the Engineer for review.

1.29 ACCEPTANCE TESTING

A. The Contractor shall perform, document and submit all acceptance testing as required by California Code of Regulations, Title 24, Part 6.

END OF SECTION

SECTION 220050 PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Division.

1.2 GENERAL MECHANICAL PROVISIONS

A. The preceding General Mechanical Provisions shall form a part of this Division with the same force and effect as though repeated here.

1.3 SCOPE

- A. Included: Provide all labor, materials and services necessary for complete, lawful and operating systems as shown or noted on the drawings or as specified here. The work includes, but is not necessarily limited to, the following:
 - 1. Domestic water system.
 - 2. Drain system (including condensate drain).
 - 3. Demolition as indicated on drawings. Where demolition is called for, remove all equipment, piping, braces, housekeeping pads, supports and related items no longer required.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Water:

- 1. Cold Water Piping:
 - a. Inside Building, Within Five Feet of Building Walls, and All Above Grade shall be steel or copper to match existing piping:
 - 1) Schedule 40 galvanized steel pipe, ASTM A120/A53. 150 psi galvanized malleable iron screwed fittings, ANSI B16.3.

-or-

2) Hard temper seamless copper, ASTM B88. Wrought copper fittings, ANSI B16.22. Type L with brazed joints (1100F, min.). 1-1/2" and smaller above grade may be soldered, 95-5 tin-antimony solder. All nipples shall be red brass (85% copper). Above grade fittings may be copper (1/2" to 2") or bronze (2-1/2" to 4") press fittings, ASME B16.18 or ASME B16.22. EPDM O-rings. Installation shall be in accordance with the manufacturer's installation instructions. Nibco, ProPress.

2. Valves and Specialties:

a. Valves:

- 1) General: Manufacturer's model numbers are listed to complete description. Equivalent models of Crane, Grinnell, Milwaukee, Nibco, Stockham or Walworth are acceptable. All valves of a particular type or for a particular service shall be by the same manufacturer. Use full port ball valve for 2" and smaller water shutoff valves; see specification below.
- 2) Gate Valve: <u>2" and Smaller</u>: All bronze. Rising stem. Union bonnet. Wedge disk. Malleable iron handwheel. 200 psi WOG. Stockham B-105. <u>2-1/2" and Larger</u>: Iron body, bronze mounted. Non-rising stem. Wedge disk. 200 psi WOG. Flanged or AWWA hub end as applicable. Stockham G-612. Underground valves shall have square operating nut. Provide one operating "T" handle for underground valves.
- 3) Check Valve: <u>2" and Smaller</u>: All bronze swing check, regrinding. 200 psi WOG. Stockham B-319.
- 4) Ball Valve: Full port. Bronze body, cap, stem, disk and ball. Screwed connection. Lever handle. TFE seat. O-ring seals. 300 psi WOG. Apollo, Grinnell, Jomar.
- 5) Plug Valve: Valves in gas piping systems must be UL listed for gas distribution. <u>4" and Smaller</u>: Eccentric bronze or nickel plated semi-steel plug. Semi-steel body. Bronze bushings. Buna-N-rings. 175 psi WOG. DeZurik Series 400. 1-1/2" and smaller natural gas valves may be full port ball valves. Apollo, Jomar, Grinnell.

b. Instruments:

- 1) Pressure Gage: Phosphor bronze tube. Bronze bushed. 1% accuracy. Cast aluminum case. 3-1/2" white dial. Adjustable pointer. Operating pressure at midscale. 1/4" NPT brass socket. Provide brass porous core pressure snubber and gage cock. Trerice, Weksler, Winters.
- 2) Gage Cock: Lever handle brass cock. 1/4" NPT connections.

c. Miscellaneous Specialties:

- 1) Union: <u>2" and Smaller</u>: AAR malleable iron, bronze to iron ground seat. 300 psi. Grinnell. <u>Size 2-1/2" and Larger</u>: Grooved pipe, synthetic gasket, malleable iron housing. Victaulic Style 77, Type "E" gasket, Grinnell.
- 2) Dielectric Coupling: Insulating union or flange rated for 250 psig. EPCO.

B. Drain Piping (including Condensate):

a. Hard temper seamless copper, ASTM B88. Wrought copper fittings, ANSI B16.22. Type L with brazed joints (1100F, min.). 1-1/2" and smaller above grade may be soldered, 95-5 tin-antimony solder. All nipples shall be red brass (85% copper). Above grade fittings may be copper (1/2" to 2") or bronze (2-1/2" to 4") press fittings, ASME B16.18 or ASME B16.22. EPDM O-rings. Installation shall be in accordance with the manufacturer's installation instructions. Nibco, ProPress.

C. Miscellaneous Piping Items:

1. Pipe Support:

- a. Pipe Hanger: Steel "J" hanger with side bolt for piping 4" and smaller; steel clevis hanger for piping 5" and larger. Load and jam nuts. Size and maximum load per manufacturer's recommendation. Felt liner for copper piping. Hanger and rod shall have galvanized finish. B-Line, Grinnell, Unistrut.
- b. Isolating Shield: Galvanized steel shell and reinforcing ribs. 1/4" non-conducting hair felt pad. Pipe hanger in accordance with paragraph above. Increase hanger size per manufacturer's recommendation. B-Line, Semco, Superstrut.

c. Construction Channel: 12-gage, 1-5/8" x 1-5/8" galvanized steel channel. Single or multiple section. Self-locking nuts and fittings. B-Line, Grinnell, Unistrut.

2.2 PIPING INSULATION MATERIALS

- A. General: All piping insulation materials shall have fire and smoke hazard ratings as tested under ASTM E-84 and UL 723 not exceeding a flame spread of 25 and smoke developed of 50.
- B. Outdoor Mastic: Childers CP-21, Foster 65-05.
- C. Insulating Tape: Ground virgin cork and synthetic elastomeric. Black, odorless, and non-toxic. K factor 0.43 Btu-in/hr-ft2-F or less. Non-shrinking. For outdoor use, provide protective finish by same manufacturer. Halstead.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. General:

1. Piping Layout: Piping shall be concealed in walls, above the ceilings, or below grade unless otherwise noted. Exposed piping shall run parallel to room surfaces; location to be approved by the Engineer. No structural member shall be weakened by cutting, notching, boring or otherwise, unless specifically allowed by structural drawings and/or specifications. Where such cutting is required, reinforcement shall be provided as specified or detailed. All piping shall be installed in a manner to ensure unrestricted flow, eliminate air pockets, prevent any unusual noise, and permit complete drainage of the system. All piping shall be installed to permit expansion and contraction without strain on piping or equipment. Vertical lines shall be installed to allow for building settlement without damage to piping. Pipe sizes indicated on the drawings are nominal sizes unless otherwise noted. Provide secondary drain piping where required.

2. Joints:

- a. Threaded: Pipe shall be cut square and reamed to full size. Threads shall be in accordance with ANSI B2.1. Joint compound or tape suitable for conveyed fluid shall be applied to male thread only. Joints shall be made with three threads exposed.
- b. Welded or Brazed: Filler rod shall be of suitable or the same alloy as pipe. Brazing filler metal shall have a minimum melting point of 1100F. Welding or brazing shall be performed by a Certified Welder or Brazer as certified by an organization/institution that uses standards recognized by the American Welding Society (AWS)

- meets the requirements of the ASME Boiler and Pressure Vessels Code. Section 9.
- c. Open Ends: Open ends of piping shall be capped during progress of work to preclude foreign matter.
- d. Electrical Equipment: Piping shall not be run over electrical panels, motor control centers or switchboards.

3. Fittings and Valves:

- a. Standard Fittings: All joints and changes in direction shall be made with standard fittings. Close nipples shall not be used.
- b. Reducers: Pipe size reduction shall be made with bell reducer fittings. Bushings shall not be used.
- c. Unions: A union shall be installed on the leaving side of each valve, at all sides of automatic valves, at equipment connections, and elsewhere as necessary for assembly or disassembly of piping.
- d. Valves: All valves shall be full line size. Provide shut-off valve for each building and each equipment connection. Provide shut-off valve at each point of connection to existing piping. At equipment connections, valves shall be full size of upstream piping, except that gas valves within 18" of the point of connection to the equipment may be the same size as the equipment connection.
- e. Valve Accessibility: All valves shall be located so that they are easily accessible. Valves located above ceilings shall be installed within 24" of the ceiling. Refer to specification 220000 for access requirements.

4. Pipe Support:

a. General: Hangers shall be placed to support piping without strain on joints or fittings. Maximum spacing between supports shall be as specified below. Actual spacing requirements will depend on structural system. Side beam clamps shall be provided with retaining straps to secure the clamp to the opposite side of the beam. Vertical piping shall be supported with riser clamp at 20' on center (maximum). Support pipe within 12" of all changes in direction. Support individual pipes with pipe hanger. Copper piping systems which protrude through a surface for connection to a fixture stop or other outlet shall be secured with a drop ell, Grinnell No. 9788; nipple through surface shall be threaded brass.

1) Pressure Pipe:

	Maximum Spacing* <u>Between Supports (ft.)</u>		
Pipe Size (Inches)			
	Copper	Sch. 40	Plastic
		steel	
1/2	6	6	4
3/4	6	8	4
1	6	8	4
1-1/4	6	10	4
1-1/2	6	10	4
2	10	10	4
2-1/2	10	10	4
3	10	10	4
4	10	10	4

^{*}Based on straight lengths of pipe with couplings only. Provide additional supports for equipment, valves or other fittings. Plastic piping shall be supported per the manufacturer's recommendations. Seismic requirements may reduce maximum spacing.

- 2) Gravity Drain Pipe: Piping shall be supported at each length of pipe or fitting, but in no case at greater spacing than indicated above for pressure pipe.
- b. Cold Water Piping: All cold water piping shall have isolating shield; no portion of this piping shall touch the structure without an isolating shield except at anchor points for fixture rough-in.
- c. Trapeze: Trapeze hangers of construction channel and pipe clamps may be used. Submit design to Engineer for review.

5. Miscellaneous:

- a. Escutcheons: Provide chrome plated metal escutcheons where piping penetrates walls, ceilings, or floors in finished areas.
- b. Pipe Sleeves: All piping passing through concrete shall be provided with pipe sleeves. Allow 1" annular clearance between sleeve and pipe for piping 3" and smaller, otherwise 2" annular clearance. Piping through walls below grade shall be sealed with Link-Seal.
- c. Pipes Passing through Fire Rated Surfaces: Pipes passing through fire rated walls, floors, ceilings, partitions, etc. shall have the annular space surrounding the pipe or pipe insulation sealed with fire rated materials in accordance with the requirements of the fire authority having jurisdiction.

- d. Dielectric Couplings: Dielectric couplings shall be installed wherever piping of dissimilar metals are joined, except that bronze valves may be installed in ferrous piping without dielectric couplings.
- e. Thermometer or Pressure Gage Tap: Provide tee for instrument well. Minimum size of pipe surrounding well shall be 1-1/2".
- B. Water Piping: Connections to branches and risers shall be made from top of main. Minimum pipe size shall be 3/4", unless otherwise noted. Provide shut off for each building and each connection to equipment. Only equipment mounted on vibration isolators shall be connected with flexible connections.
- C. Drain Piping (Including Condensate): Install with constant pitch to receptacle, 1/4" per foot where possible, otherwise 1/8" per foot minimum. Provide TEE with clean-out plug at all changes of direction. Provide trap at each air handling unit to prevent air leakage. Only equipment mounted on vibration isolators shall be connected with flexible connection.

3.2 PIPING INSULATION INSTALLATION:

A. Cold Water Piping-Freeze Protection: All cold water piping exposed to weather shall be wrapped with insulating tape, 50% overlap. Cover valves to stem. Apply at least two coats of protective finish.

3.3 TESTS AND ADJUSTMENTS

A. General: Unless otherwise directed, tests shall be witnessed by a representative of the Engineer. Work to be concealed shall not be enclosed until prescribed tests are made. Should any work be enclosed before such tests, the Contractor shall, at his expense, uncover, test and repair all work to original conditions. Leaks and defects shown by tests shall be repaired and entire work retested. Tests may be made in sections, however, all connections between sections previously tested and new section shall be included in the new test.

B. Gravity Systems:

1. Drains (Including Condensate): All ends of the drain system shall be capped and lines filled with water to the top of the highest vent, 10' above grade minimum. This test shall be made before any fixtures are installed. Test shall be maintained until all joints have been inspected, but no less than 2 hours.

C. Pressure Systems:

1. General: There shall be no drop in pressure during test except that due to ambient temperature changes. All components of system not rated for test pressure shall be isolated from system before test is made.

2. Domestic Cold Water Piping: Maintain 100 psig water pressure for 4 hours.

3.4 DISINFECTION

A. Disinfect all domestic water piping systems in accordance with AWWA Standard C651, "AWWA Standard for Disinfecting Water Mains", and in accordance with administrative authority. Disinfection process shall be performed in cooperation with health department having jurisdiction and witnessed by a representative of the Engineer. During procedure signs shall be posted at each water outlet stating, "Chlorination - Do Not Drink". After disinfection, water samples shall be collected for bacteriological analysis. Certificate of Bacteriological Purity shall be obtained and delivered to the Owner through the Engineer.

END OF SECTION

SECTION 230100 GENERAL MECHANICAL PROVISIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section

1.2 SUMMARY

- A. This section covers and applies to all work included in Divisions 22, 23 and 25.
- B. Work in this Section includes providing labor, materials, equipment, services necessary, fabrication, installation and testing for fully operational and safe systems including all necessary materials, appurtenances and features whether specified or shown in the contract documents or not, in conformity with all applicable codes and authorities having jurisdiction for the following:
 - 1. Mechanical work covered by all sections within Division 22, 23 and 25 of the specifications, including, but not limited to:
 - a. Heating, ventilating and air conditioning systems and equipment.
 - b. Plumbing systems and equipment.
 - c. Control systems.
 - d. Testing and balancing.
- C. Provide cutting and patching, for the Mechanical Work.
- D. Provide piping from plumbing terminations, 10 feet from equipment, for water, gas, sanitary sewer and waste.
- E. Provide drain piping for all equipment requiring drainage to floor drains, roof, sink, or funnel drains.

1.3 RELATED WORK AND REQUIREMENTS

A. Carefully check the documents of each section with those of other sections and Divisions. Ascertain the requirements of any interfacing materials or equipment being furnished and/or installed by those sections and Divisions, and provide the proper installation and/or required interface.

1.4 QUALITY ASSURANCE

- A. Supply all equipment and accessories in compliance with the applicable standards listed in article 1.6 of this section and with all applicable national, state and local codes.
- B. All items of a given type shall be the products of the same manufacturer, unless otherwise specified herein.

1.5 SUBMITTALS

- A. Submit shop drawings, product data, samples and certificates of compliance required by Division 01.
- B. Product Data Submittals: Submit manufacturers standard published data. Mark each copy to identify applicable products, models, options, accessories and other data. Supplement manufacturers standard data to provide information specific to this project.
- C. Organize submittals in sequence according to Specification Section. Submit in single electronic PDF document with tabs identifying each Specification Section. Provide Table of Contents identifying the Specification Sections being submitted and the contents within each tabbed section. Prepare Submittals in multiple volumes if required. Provide a complete Submittal package by Division at one time. Do not submit individual Sections piecemeal.
- D. In addition to the submittal requirements of Division 22, 23 and 25, submit product data for the following items per the provisions in Division 01:
 - 1. All Equipment and Fixtures indicated in Schedules on Drawings.
 - 2. Access panels
- E. If more than two submissions are required (initial submittal and one resubmittal) based on rejection or lack of compliance by submittal, then the Contractor shall:
 - 1. Arrange for additional reviews by the Design Engineers.
 - 2. Pay all costs for such additional reviews.
- F. Corrections or comments made on the shop drawings during review do not relieve the Contractor from compliance with requirements of the drawings and specifications. Shop drawing checking by the Engineer is only for review of general conformance with the design concept of the project and general compliance with the information given in the contract documents. The Contractor is responsible for:
 - 1. Confirming and correlating all quantities and dimensions.

- 2. Selecting fabrication processes and techniques of construction.
- Coordinating his work with that of all other trades.
- 4. Performing his work in a safe and satisfactory manner.

G. Substitutions:

- 1. Prior to Bid shall be in accordance with Division 01.
- 2. After award of contract, submit separate substitution request for each substitution in accordance with the requirements hereinbelow. Support each request with:
 - a. Complete data substantiating compliance of proposed substitution with requirements stated in Contract documents.
 - b. Data relating to changes in construction schedule.
 - Any effect of substitution on other Work in this and other Divisions, and any other related contracts, and changes required in other work or products.
- Contractor shall be responsible at no extra cost to Owner for any changes resulting from proposed substitutions which affect work of other Sections or Divisions, or related contracts.
- 4. Claims for additional costs caused by substitution that may subsequently become apparent shall be met by the Contractor.
- 5. Failure by the Contractor to order materials or equipment in a timely manner will not constitute justification for a substitution.
- 6. Substitutions will not be considered for acceptance when acceptance will require revision of Contract Documents, unless Contractor bears cost of redesign.
 - a. Arrange for required redesign by Engineer.
 - b. Pay all costs for such redesign.
 - c. All subject to Architect's approval.
- 7. Approval of substitutions shall not relieve Contractor from full compliance with requirements of Contract documents.

H. As-built (Record) Drawings:

- 1. Shall be in accordance with Division 01.
- 2. Provide after installation is complete. Final signoff and Client acceptance will not occur prior to submission of As-built drawings to Architect/Engineer.
- 3. Indicate as-built conditions and all revisions, fully illustrating all revisions made by all trades in the course of work.
- 4. Dimension physical locations of ductwork, and piping with reference elevations and distances above finished floors, below beams, from wall faces, underground (invert elevations) and from column lines.
- 5. Exact location, type and function of concealed valves, dampers, controllers, piping, air vents, piping drains and isolators.
- 6. Indicate all equipment sizes and capacities and tag numbers.
- 7. Provide drawing on reproducible bond.
- 8. These drawings shall be for as-built record purposes for the Owner's use and are not considered shop drawings.
- I. Operating Instructions, Maintenance Manuals and Parts Lists:
 - 1. Before requesting acceptance of work, submit one set for review by Architect/Engineer.
 - 2. After review, furnish two (2) printed and bound sets.
 - 3. Include:
 - a. Installers name, address, telephone number and representatives name, and website address.
 - b. Manufacturer's name, model number, service manual, spare-parts list, and descriptive literature for all components, cross referenced and numbered on Record Drawings, and in accordance with Title 24 as required.
 - c. Maintenance instructions.
 - d. Listing of possible breakdown and repairs.
 - e. Instruction for starting, operation and programming.

- f. Detailed and simplified one line, color coded flow and wiring diagram.
- g. Field test report, including:
 - 1) Instrument set points.
 - 2) Normal operating values.
- h. Name, address and phone number of contractors equipment suppliers and service agencies.
- Assemble manufacturer's equipment manuals in chronological order, following the specification alpha-numeric system, in heavy duty 3-ring binders clearly titled on the spine and front cover with appropriate index dividers.

J. Special Tools:

- 1. One set of any special tools required to operate, adjust, dismantle or repair equipment furnished under any section of this Division.
- 2. "Special tools": those not normally found in possession of mechanics or maintenance personnel.
- 3. Tag each item and cross reference in Maintenance Manual.
- 4. Turn over to Owner's representative or temporarily secure to unit at Architect's instruction.

K. Quantity of Submittals Required:

- 1. Product Data (brochures):
 - a. Submit electronic PDF copy of product data.
 - b. If comments are required, comment sheet(s) will be returned with submittal.

2. Samples:

a. Submit as required in each specification section.

1.6 REFERENCE STANDARDS

A. Reference standards of industry organizations, manufacturer associates and professional associations that publish standards of construction and/or materials that are referenced in this Division are listed in Division 01. The Standards as referenced in this Specification shall be considered as attached and binding to the requirements of the Construction Documents. The Contractor is to be considered as knowledgeable of these Standards and their requirements for the performance of the Work.

1.7 CODE COMPLIANCE

- A. In addition to complying with all other legal requirements, comply with current provisions of governing codes and regulations in effect during progress of the Work, and with the following:
 - 1. Drawings and specification requirements shall govern where they exceed Code and Regulation requirements.
 - 2. Where requirements between governing Codes and Regulations vary, the more restrictive provisions shall apply.
 - 3. Nothing contained in Contract Documents shall be construed as authority or permission to disregard or violate legal requirements. The Contractor shall immediately draw the attention of the Architect to any such conflicts noted in the Contract Documents.

1.8 DESCRIPTION OF BID DOCUMENTS

A. General:

- 1. Words or phrases such as "The Contractor shall," "shall be," "furnish," provide," "connect," "a," "an," "the," and "all" etc. may be omitted for brevity.
- 2. The Drawings and Specifications are complimentary each to the other. Where discrepancies occur between the Drawings and Specifications, the more stringent provisions shall apply.
- 3. Examine all drawings and specifications prior to bidding the work. Report any discrepancies to the Engineer.

B. Specifications:

- Specifications, in general, describe quality and character of materials and equipment and the Standards that govern. Contractor is responsible for design and construction costs incurred for equipment and materials other than the Basis of Design, including but not limited to architectural, structural, electrical, HVAC, fire sprinkler and plumbing.
- 2. Specifications are of simplified form and include incomplete sentences.

C. Drawings:

- Drawings in general are diagrammatic and indicate scope, sizes, routing, locations, connections to equipment and methods of installation, but not necessarily offsets, obstructions or structural conditions. Drawings are not intended to show every item, fitting, transition or offset in its exact dimension or detail of equipment or proposed system layout. Locations on drawings may be distorted for purposes of clearness and legibility.
- Contractor to provide additional offsets, fittings, hangers, supports, valves, drains as required for construction and coordination with work of other trades.
- 3. Before proceeding with work, ordering or fabricating materials, check and verify all dimensions and carefully check space requirements with other Work to ensure that all equipment and materials can be installed in spaces allotted.
- 4. Contractor to assume all responsibility for fitting of materials and equipment to other parts of equipment and structure.
- 5. The Contractor is responsible for installing the work in such a manner that it will conform to the structure and architectural elements, avoid obstructions, maintain headroom, leave adequate clearance for proper maintenance and repairs, and provide clearances and access required by codes. Do not scale distances off of mechanical drawings. Use actual field measured building dimensions.
- 6. Make adjustments that may be necessary or requested in order to resolve space problems, preserve headroom, and avoid architectural openings, structural members and work of other trades.
- 7. Above items to be performed at no additional cost to the Owner.
- D. Typical details, where shown on the drawings, apply to each and every item of the project where such items are applicable. Typical details are not repeated in full on the plans, and are diagrammatic only, but with the intention that such details shall be incorporated in full.

1.9 DEFINITIONS

- A. "Piping": pipe, tube, fittings, flanges, valves, controls, strainers, hangers, supports, unions, traps, drains, insulation, and related items.
- B. "Motor Controllers": manual or magnetic starters (with or without switches), individual pushbuttons or hand-off-automatic (HOA) switches controlling the operation of motors.
- C. "Control" or "Actuating Devices": automatic sensing and switching devices such as thermostats, pressure, float, electro-pneumatic switches and electrodes controlling operation of equipment.

1.10 JOB CONDITIONS

- A. Adjoining work of other Divisions shall be examined for interferences and conditions affecting this Division.
- B. Examine site related work and surfaces before starting work of any Section.
 - 1. Report to Architect, in writing, conditions which will prevent proper provision of this work.
 - 2. Beginning work of any Section without reporting unsuitable conditions to Architect constitutes acceptance of conditions by Contractor.
 - 3. Perform any required removal, repair or replacement of this work caused by unsuitable conditions at no additional cost to Owner.
- C. Connections to existing work.
 - 1. Unknown conditions will be addressed if reasonable.
 - 2. Contractor shall field verify existing dimensions prior to ordering or fabricating materials.
 - 3. Install new work and connect to existing work with minimum interference to existing facilities.
 - 4. Temporary shutdowns of existing services:
 - a. At no additional charges.
 - b. At times not to interfere with normal operation of existing facilities.
 - c. Provide 48 hour notification.
 - 5. Maintain continuous operation of existing facilities as required with

necessary temporary connections between new and existing work.

- 6. Restore existing disturbed work to original condition.
- D. Removal and relocation of existing work.
 - 1. Disconnect, remove or relocate material, equipment, plumbing fixtures, piping and other work noted and required by removal or changes in existing construction.
 - 2. Where existing pipes, conduits and/or ducts which are to remain prevent installation of new work as indicated, relocate, or arrange for relocation, of existing pipes, conduits and/or ducts.
 - 3. Provide new material and equipment required for relocated equipment.
 - 4. Plug or cap active piping or ductwork behind or below finish.
 - 5. Do not leave long dead-end branches. Cap or plug as close as possible to active line.
 - 6. Remove unused piping, ductwork and material.
 - 7. Dispose of removed fixtures and equipment as directed.
 - 8. Turn over removed fixtures and equipment to Owner as directed.
- E. Special Traffic Requirements:
 - 1. Maintain emergency and service entrances useable to pedestrian, truck, and ambulance traffic at all times.
 - 2. Where trenches are cut, provide adequate bridging for above-mentioned traffic.

1.11 TEMPORARY FACILITIES

A. See Division 01 for temporary facilities required.

1.12 SCHEDULE OF WORK

- A. Arrange work to conform to schedule of construction established or required to comply with Contract Documents.
- B. In scheduling, anticipate means of installing equipment through available openings in structure.
- C. Confirm in writing to Architect, within 30 days of signing of contract, anticipated

number of days required to perform test, balance, and acceptance testing of mechanical systems:

- 1. This phase must occur after completion of mechanical systems, including all control calibration and adjustment, and requires substantial completion of the building, including closure, ceilings, lighting, partitioning, etc.
- 2. Submit for approval at this time, names and qualifications of test and balancing agencies to be used.

1.13 NOISE REDUCTION

- A. Cooperate in reducing objectionable noise or vibration caused by mechanical systems.
 - 1. To extent of adjustments to specified and installed equipment and appurtenances.
- B. Correct noise problems caused by failure to install work in accordance with Contract Documents. Include labor and materials required as result of such failure.

PART 2 - PRODUCTS

2.1 ACCESS DOORS

- A. Size for proper access, adjusting and maintenance:
 - 1. 12 in. x 12 in. minimum for valves, trap primers, shock absorbers, etc.
 - 2. 24 in. x 24 in. for man access to concealed fans, coils, etc., unless indicated otherwise.
- B. Provide as required by work in this Division.
- C. Style, Color and Finish to match adjacent construction and as approved by Architect.

PART 3 - EXECUTION

3.1 MANUFACTURER'S RECOMMENDATIONS

A. All material, equipment, devices, etc., shall be installed in accordance with the recommendations of the manufacturer of the particular item. The Contractor shall be responsible for all installations contrary to the manufacturer's recommendations. The Contractor shall make all necessary changes and revisions to achieve such compliance. Manufacturer's installation instructions shall be delivered to and maintained at the job site through the construction of the project.

3.2 CUTTING AND PATCHING

- A. All carpentry, cutting and patching to be done under trades doing that work. Work shall be done in accordance with Division 01.
- B. Provide all carpentry, cutting and patching required for proper installation of material and equipment specified in Divisions 22, 23 and 25.
- C. Do not cut, notch or drill structural members without consent of Architect.
- D. All cutting and repairing shall conform to Title 21 of California Administrative Code.

3.3 CONCRETE ANCHORS

- A. Steel bolt with expansion anchor requiring a drilled hole powder driven anchors are not acceptable.
- B. Minimum concrete embedment shall be 4-1/2 diameters unless otherwise noted on plans.
- C. Minimum spacing shall be 12 diameters center to center and 6 diameters center to edge of concrete unless otherwise noted on plans.
- D. Maximum allowable stresses for tension and shear shall be 80% of the ICC test report values. Hilti.

3.4 EQUIPMENT ANCHORING

- A. All equipment shall be securely anchored in accordance with CBC.
- B. All equipment mounted on concrete shall be secured with a concrete anchor as specified above at each mounting point.
- C. Secure base plate as indicated above.

3.5 SUPPORTS AND SEISMIC RESTRAINTS

A. All mechanical systems (all ductwork, piping, etc.) shall be provided with supports and seismic restraints in accordance with OSHPD Pre-Approval OPM #0043 and in accordance with CBC.

3.6 WATER PROOFING

- A. Under General Construction Work.
- B. Where any work pierces waterproofing, installation shall be subject to review.
 - 1. Provide all necessary sleeves, caulking, flashing and flashing fittings required to make openings absolutely watertight.

C. Flashing:

- Mechanical Contractor shall provide flashing for all work in this Division, unless otherwise provided by roofing installer, as required to accommodate roof slope, roofing material, and roof installation method. No additional costs will be paid for lack of familiarity of Contractor with roofing type or slope.
- 2. Mechanical Contractor shall be responsible for coordinating size of penetrations and locations with roofing contractor.
- Mechanical Contractor shall be responsible for scheduling installation of piping and other penetrations through roof structural system to exterior that they are complete and secure for the orderly installation of the roofing system.
- 4. 4 lb. lead.
- 5. 16 oz. lead coated copper.
- 6. No.22 USSG aluminum.
- 7. Fittings for piping through roof:
 - a. Galvanized cast iron bottom recess roof type.
 - Similar to Josam No. 26440 or No. 26450.
- D. Provide weather protection canopies, hoods or enclosures over out-of-door equipment which could be damaged by exposure to weather.
 - 1. This requirement applies to:
 - Motors and drives.

- b. Controls.
- c. Instruments.
- 2. Identify items under such covers if entirely enclosed.

3.7 ACCESS TO VALVES AND EQUIPMENT

- A. Access shall be possible where valves, expansion joints, fire dampers, motors, filters, control devices, and any other equipment requiring access for servicing, repairs, or maintenance are located in walls, soffits, chases, and/or above ceilings.
- B. Definition of Accessible:
 - 1. Valves and dampers may be operated.
 - 2. Control devices may be adjusted.
 - 3. Fire dampers may be reset.
 - 4. Equipment access panels may be opened.
 - 5. Normal maintenance work such as replacement of filters, lubrication of bearings, etc., may be performed readily within arm's reach of access opening.
 - 6. It shall not be necessary to crawl through furred ceiling space to perform such operations.
- C. Install piping, equipment and accessories to permit easy access for maintenance.
- D. Group concealed valves, expansion joints, controls, dampers and equipment requiring service access, so as to be freely accessible through access doors and to minimize the number of access doors required.
- E. Relocate piping equipment and accessories as required, at no extra cost to afford proper maintenance access.
- F. Coordinate location of access panels with applicable trades installing walls or ceiling.
 - 1. Coordinate panel locations with lights and other architectural features.
 - 2. Submit proposed panel locations to Architect for review.
- G. Arrange for location and marking of removable tiles in splined ceilings where access panels are not installed.

H. Existing Structures:

- When installation requires access openings through existing construction, coordinate location of necessary access panels, and arrange for respective trades to provide openings and framing which may be required.
- 2. Restore adjoining existing surfaces to original condition after new access panels have been installed.

3.8 CLEANING AND ADJUSTING

- A. Work to be painted: Brush and clean work prior to concealing, painting and acceptance. Perform in stages if directed.
- B. Painted or exposed work soiled or damaged: Clean, repair and paint to match adjoining work before final acceptance.
- C. Remove debris from inside and outside of materials and equipment.
- D. Flush out piping after installation.
- E. Adjust valves and automatic control devices.
- F. Traps, wastes and supplies: unobstructed.

3.9 FIELD QUALITY CONTROL

- A. Refer to Division 01.
- B. Tests:
 - 1. Perform as specified in individual Divisions, and as required by authorities having jurisdiction.
- C. Furnish written report and certification that tests have been satisfactorily completed.
- D. Repair or replace defective work, as directed.
- E. Pay for restoring or replacing damaged work due to tests, as directed.
- F. Pay for restoring or replacing damaged work of others, due to tests, as directed.

3.10 TRAINING

A. Provide training by qualified manufacturers' representatives for equipment as specified in this Division.

- B. Training to include:
 - 1. Site-specific training.
 - 2. Minimum hours as specified in each Section.
 - 3. Training materials (minimum six sets).
 - 4. Electronic media available from the manufacturer [two (2) copies].
- C. Each training session to be scheduled with Owner at least 30 days in advance.

END OF SECTION

SECTION 230500 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. HVAC demolition.
 - 9. Equipment installation requirements common to equipment sections.
 - 10. Painting and finishing.
 - 11. Concrete bases.
 - 12. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

- F. The following are industry abbreviations for plastic materials:
 - 1. CPVC: Chlorinated polyvinyl chloride plastic.
 - 2. PE: Polyethylene plastic.
 - 3. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- H. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.4 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Eslon Thermoplastics.
 - b. Approved equivalent.
- B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Thompson Plastics, Inc.
 - b. Approved equivalent.
- C. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 - 1. Manufacturers:
 - a. NIBCO INC.
 - b. Approved equivalent.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.

- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Eclipse, Inc.
 - d. Epco Sales, Inc.
 - e. Hart Industries, International, Inc.
 - f. Watts Industries, Inc.; Water Products Div.
 - g. Zurn Industries, Inc.; Wilkins Div.
 - h. Approved equivalent.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Approved equivalent.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - e. Approved equivalent.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
 - c. Approved equivalent.

- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.
 - e. Approved equivalent.

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- C. Pressure Plates: Carbon steel or Stainless steel. Include two for each sealing element.
- D. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- B. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. PVC Pipe: ASTM D 1785, Schedule 40.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.

- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.10 ACCESS DOORS

- A. Size for proper access, adjusting and maintenance:
 - 1. 12 in. x 12 in. minimum for valve, trap primers, shock absorbers, etc.
 - 2. 24 in. x 24 in. for man access to concealed fans, coils, etc., unless indicated otherwise.
- B. Provide as required by work in Division 22, 23, and 25.
- C. Style, color, and finish to match adjacent construction and as approved by Architect.

PART 3 - EXECUTION

3.1 HVAC DEMOLITION

- A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 - 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 - 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.

- 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
- 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- 8. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 and 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Sleeves are not required for core-drilled holes.
- N. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.

- a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
- 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
- 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. PVC or Steel Pipe Sleeves: For pipes NPS 6 and smaller.
 - 1) Seal space outside of sleeve fittings with grout.
- 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint.
- O. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

- 1. Install unions, in piping NPS 2-1/2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
- 2. Install flanges, in piping NPS 3 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.6 ACCESS TO VALVE AND EQUIPMENT

- A. Access shall be possible where valves, expansion joints, fire dampers, motors, filters, control devices, and any other equipment requiring access for servicing, repairs, or maintenance are located in walls, soffits, chases, and/or above ceilings.
- B. Definition of Accessible:
 - 1. Valves and dampers may be operated.
 - 2. Control devices may be adjusted.
 - 3. Fire dampers may be reset.
 - 4. Equipment access panels may be opened.
 - 5. Normal maintenance work such as replacement of filters, lubrication of bearings, etc., may be performed readily within arm's reach of access opening.
 - 6. It shall not be necessary to crawl through furred ceiling space to perform such operations.
- C. Install piping, equipment and accessories to permit easy access for maintenance.
- D. Group concealed valves, expansion joints, controls, dampers and equipment requiring service access, so as to be freely accessible through access doors and to minimize the number of access doors required.
- E. Relocate piping equipment and accessories as required, at no extra cost to afford proper maintenance access.
- F. Coordinate location of access panels with applicable trades installing walls or ceiling.
 - 1. Coordinate panel locations with lights and other architectural features.

- 2. Submit proposed panel locations to Architect for review.
- G. Arrange for location and marking of removable tiles in splined ceilings where access panels are not installed.

3.7 PAINTING

A. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 6 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3500-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03.

3.9 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- B. Field Welding: Comply with AWS D1.1.

3.10 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.11 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION

SECTION 230513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION

SECTION 230519 METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Dial-type pressure gages.
 - 4. Gage attachments.
 - 5. Test plugs.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Trerice, H. O. Co.
 - b. Weiss Instruments, Inc.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 6-inch nominal size.
 - 4. Case Form: Straight unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 7. Window: Glass or plastic.
 - 8. Stem: Aluminum or brass and of length to suit installation.

- a. Design for Air-Duct Installation: With ventilated shroud.
- b. Design for Thermowell Installation: Bare stem.
- 9. Connector: 3/4 inch, with ASME B1.1 screw threads.
- Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
- B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flo Fab Inc.
 - b. Miljoco Corporation.
 - c. Palmer Wahl Instrumentation Group.
 - d. Tel-Tru Manufacturing Company.
 - e. Trerice, H. O. Co.
 - f. Weiss Instruments. Inc.
 - g. Winters Instruments U.S.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 7. Window: Glass.
 - 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
 - Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:

- 1. Standard: ASME B40.200.
- 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
- 3. Material for Use with Copper Tubing: CNR or CUNI.
- 4. Material for Use with Steel Piping: CRES or CSA.
- 5. Type: Stepped shank unless straight or tapered shank is indicated.
- 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
- 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
- 8. Bore: Diameter required to match thermometer bulb or stem.
- 9. Insertion Length: Length required to match thermometer bulb or stem.
- 10. Lagging Extension: Include on thermowells for insulated piping and tubing.

- 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Ernst Flow Industries.
 - d. Flo Fab Inc.
 - e. Tel-Tru Manufacturing Company.
 - f. Trerice, H. O. Co.
 - g. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - h. Weiss Instruments. Inc.
 - i. Winters Instruments U.S.
 - 2. Standard: ASME B40.100.
 - Case: Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
 - 8. Pointer: Dark-colored metal.
 - 9. Window: Glass.
 - 10. Ring: Brass or Stainless steel.
 - 11. Accuracy: Grade B, plus or minus 2 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston or porous-metal-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Flow Design, Inc.
- 2. Miljoco Corporation.
- 3. National Meter, Inc.
- 4. Peterson Equipment Co., Inc.
- 5. Sisco Manufacturing Company, Inc.
- 6. Trerice, H. O. Co.
- 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
- 8. Weiss Instruments, Inc.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- H. Install remote-mounted pressure gages on panel.
- I. Install valve and snubber in piping for each pressure gage for fluids (except steam).
- J. Install test plugs in piping tees.

- K. Install thermometers in the following locations:
 - 1. Inlet and outlet of chiller.
 - 2. Inlet and outlet of boiler.
 - 3. Inlet and outlet of each hydronic coil in air-handling units.
- L. Install pressure gages in the following locations:
 - Air Handler filters.
 - 2. Suction and discharge of each pump

3.2 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of chiller shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- B. Thermometers at inlet and outlet of boiler shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- C. Thermometers at inlet and outlet of each hydronic coil shall be one of the following:
 - 1. Compact-style, liquid-in-glass type.
- D. Thermometer stems shall be of length to match thermowell insertion length.

3.3 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 deg F and minus 20 to plus 50 deg C.
- B. Scale Range for Heating, Hot-Water Piping: 30 to 240 deg F and 0 to plus 115 deg C.

3.4 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at inlet and outlet of each chiller chilled-water and condenser-water connection shall be the following:
 - 1. Test plug with EPDM self-sealing rubber inserts.
- B. Pressure gages at suction and discharge of each pump shall be the following:
 - 1. Sealed, direct-mounted, metal case.

3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 psi.
- B. Scale Range for Heating, Hot-Water Piping: 0 to 100 psi.

END OF SECTION

SECTION 230523 GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Bronze ball valves.
- 2. Iron, single-flange butterfly valves.
- 3. High-performance butterfly valves.
- 4. Iron, center-guided check valves.
- 5. Eccentric plug valves.
- 6. Chainwheels.

B. Related Sections:

- 1. Division 23 HVAC piping Sections for specialty valves applicable to those Sections only.
- 2. Division 23 Section "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

- 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
- 2. ASME B31.1 for power piping valves.
- 3. ASME B31.9 for building services piping valves.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to HVAC valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:

- 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
- 2. Handwheel: For valves other than quarter-turn types.
- 3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
- 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.
- 5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Hammond Valve.
 - d. Legend Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.

- h. Stem: Bronze.
- i. Ball: Chrome-plated brass.
- j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. DeZurik Water Controls.
 - e. Hammond Valve.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.
 - h. Tyco Valves & Controls; a unit of Tyco Flow Control.
 - i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

- a. Standard: MSS SP-67, Type I.
- b. CWP Rating: 200 psig.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
- e. Seat: EPDM.
- f. Stem: One- or two-piece stainless steel.
- g. Disc: Aluminum bronze.

2.4 HIGH-PERFORMANCE BUTTERFLY VALVES

- A. Class 150, Single-Flange, High-Performance Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Flowseal.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. DeZurik Water Controls.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Tyco Valves & Controls; a unit of Tyco Flow Control.

2. Description:

- a. Standard: MSS SP-68.
- b. CWP Rating: 285 psig at 100 deg F.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: Carbon steel, cast iron, ductile iron, or stainless steel.
- e. Seat: Reinforced PTFE or metal.
- f. Stem: Stainless steel; offset from seat plane.
- g. Disc: Carbon steel.
- h. Service: Bidirectional.

2.5 IRON, CENTER-GUIDED CHECK VALVES

- A. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crispin Valve.
 - c. Val-Matic Valve & Manufacturing Corp.
 - d. Tyco Fire Products LP; Grinnell Mechanical Products.
 - e. Muessco

Description:

- a. Standard: MSS SP-125.
- b. NPS 2-1/2 to NPS 12, CWP Rating: 300 psig.
- c. NPS 14 to NPS 24, CWP Rating: 250 psig.
- d. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
- e. Style: Compact wafer.
- f. Seat: Bronze.

2.6 ECCENTRIC PLUG VALVES

- A. 175 CWP, Eccentric Plug Valves with Resilient Seating.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Clow Valve Co.; a division of McWane, Inc.
 - b. DeZurik Water Controls.
 - c. Homestead Valve; a division of Olson Technologies, Inc.
 - d. M&H Valve Company; a division of McWane, Inc.
 - e. Milliken Valve Company.
 - f. Henry Pratt Company.
 - g. Val-Matic Valve & Manufacturing Corp.

2. Description:

- a. Standard: MSS SP-108.
- b. CWP Rating: 175 psig minimum.
- c. Body and Plug: ASTM A 48/A 48M, gray iron; ASTM A 126, gray iron; or ASTM A 536, ductile iron.
- d. Bearings: Oil-impregnated bronze or stainless steel.
- e. Ends: Flanged.
- f. Stem-Seal Packing: Asbestos free.
- g. Plug, Resilient-Seating Material: Suitable for potable-water service unless otherwise indicated.

2.7 CHAINWHEELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Babbitt Steam Specialty Co.
 - 2. Roto Hammer Industries.
 - 3. Trumbull Industries.
- B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to ball and butterfly valve stems.
 - 3. Sprocket Rim with Chain Guides: Ductile iron, of type and size required for valve. Include zinc coating.
 - 4. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for ball and butterfly valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
- F. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball or butterfly or plug valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service except Steam: ball, or butterfly valves.
 - 4. Pump-Discharge Check Valves:
 - a. NPS 2-1/2 and Larger: Iron center-guided, metal-seat check valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.

- 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
- 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

- 1. Bronze Valves: Shall have threaded ends.
- 2. Ball Valves: Two piece, full port, bronze with bronze or stainless-steel trim.
- 3. Bronze Swing Check Valves: Class 125, bronze disc.

B. Pipe NPS 2-1/2 and Larger:

- 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends
- 2. Iron Ball Valves, NPS 2-1/2 to NPS 10: Class 150.
- 3. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, aluminum-bronze disc.
- 4. High-Performance Butterfly Valves: Class 150, single flange.
- 5. Iron, Center-Guided Check Valves: Class 150, compact-wafer, metal seat.
- 6. Eccentric Plug Valves: 175 CWP, resilient seating.

END OF SECTION

SECTION 230529 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Thermal-hanger shield inserts.
- 4. Fastener systems.
- 5. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7-16.
 - 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

- A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.
- B. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

- E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- F. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- L. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 (DN 20 to DN 900), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
 - 3. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 4. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 5. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 (DN 25 to DN 750), from two rods if longitudinal movement caused by expansion and contraction might occur.

- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 4. C-Clamps (MSS Type 23): For structural shapes.
 - 5. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
 - 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
- P. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION

SECTION 230548 VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Resilient pipe guides.
 - 3. Restraining braces and cables.

1.2 PERFORMANCE REQUIREMENTS

A. As Indicated on the Construction Drawings:

1.3 SUBMITTALS

- A. Product Data: For each product indicated.
- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint calculations and details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the CBC unless requirements in this Section are more stringent.
- B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Mason Industries.

- 4. Vibration Eliminator Co., Inc.
- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene or rubber.
- C. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch- (13-mm-) thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.2 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 4. Mason Industries.
 - 5. TOLCO Incorporated; a brand of NIBCO INC.
 - 6. Unistrut; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.
- E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
- F. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

- G. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- H. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Not Used

B. Equipment Restraints:

- 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
- 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

C. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 2. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
- 3. Brace a change of direction longer than 12 feet (3.7 m).
- D. Install cables so they do not bend across edges of adjacent equipment or building structure.
- E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- G. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

H. Drilled-in Anchors:

- Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 23 Section "Hydronic Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Tests and Inspections:
 - 1. Test each type and size of installed anchors and fasteners as indicated on the drawings.
 - 2. Test to 90 percent of rated proof load of device.
 - 3. Measure isolator restraint clearance.
 - 4. Measure isolator deflection.
 - 5. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION

SECTION 230553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Warning signs and labels.
- 3. Pipe labels.

1.2 SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

- 1. Material and Thickness: Brass, 0.032-inch (0.8-mm) or anodized aluminum, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
- 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- 3. Minimum Letter Size: 1/2 inch (13 mm). Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 4. Fasteners: Stainless-steel rivets or self-tapping screws.

B. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: Black.
- 3. Background Color: White.
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- 6. Minimum Letter Size: 1/2 inch (13 mm). Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.

- C. Label Content: Include equipment's Drawing designation or unique equipment number, and Room number of primary space served (where thermostat is located). Coordinate with District to match final installed room numbering.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Red.
- C. Background Color: White.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 20 feet along each run. Reduce intervals to 10 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:

- 1. Chilled-Water Piping:
 - a. Background Color: White.
 - b. Letter Color: Blue.

- 2. Heating Water Piping:
 - Background Color: White. Letter Color: Red. a.
 - b.
- Refrigerant Piping: 3.
 - Background Color: Yellow. a.
 - Letter Color: Black. b.

END OF SECTION

SECTION 230593 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Variable-flow hydronic systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 SUBMITTALS

- A. Qualification Data: Within 45 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Certified TAB reports.

1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or NEBB with a minimum of 10 years of successful testing, adjusting, and balancing experience.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or NEBB as a TAB technician.

1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Section "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine operating safety interlocks and controls on HVAC equipment.
- O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.

8. Windows and doors can be closed so indicated conditions for system operations can be met

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" or NEBB's "Procedural Standards for TAB." and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.

- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
 - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
 - 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

- 1 Measure airflow of submain and branch ducts
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone
- 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
- 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.7 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- B. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- C. Set calibrated balancing valves, if installed, at calculated presettings.
- D. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- E. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- F. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow
 - 3. Record settings and mark balancing devices.
- G. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- H. Check settings and operation of each safety valve. Record settings.

3.8 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.9 PROCEDURES FOR HEAT EXCHANGERS

- A. Measure water flow through all circuits.
- B. Adjust water flow to within specified tolerances.
- C. Measure inlet and outlet water temperatures.
- D. Check settings and operation of safety and relief valves. Record settings.

3.10 PROCEDURES FOR MOTORS

- Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data: A.
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - Motor rpm. 3.
 - Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - Nameplate and measured amperage, each phase. 6.
 - Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.11 **TOLERANCES**

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent. 1.
 - Air Outlets and Inlets: Plus or minus 10 percent. 2.
 - Rooms with Multiple Supply Outlets: 0% to plus 10% of air flow rate in CFM for whole room indicated on drawings.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - Cooling-Water Flow Rate: Plus or minus 10 percent.

3.12 REPORTING

Α. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.13 **FINAL REPORT**

- General: Prepare a certified written report; tabulate and divide the report into separate Α. sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.

- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report.

 Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.

- 4. Pipe and valve sizes and locations.
- Terminal units.
- 6. Balancing stations.
- 7. Position of balancing devices.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:

- Unit identification.
- b. Location.
- c. Make and type.
- d. Model number and unit size.
- e. Manufacturer's serial number.
- f. Unit arrangement and class.
- g. Discharge arrangement.
- h. Sheave make, size in inches (mm), and bore.
- i. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- j. Number, make, and size of belts.
- k. Number, type, and size of filters.

2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches (mm), and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).

3. Test Data (Indicated and Actual Values):

- a. Total air flow rate in cfm (L/s).
- b. Total system static pressure in inches wg (Pa).
- c. Fan rpm.
- d. Discharge static pressure in inches wg (Pa).
- e. Filter static-pressure differential in inches wg (Pa).
- f. Cooling-coil static-pressure differential in inches wg (Pa).
- g. Heating-coil static-pressure differential in inches wg (Pa).
- h. Outdoor airflow in cfm (L/s).
- i. Return airflow in cfm (L/s).
- j. Outdoor-air damper position.
- k. Return-air damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:

a. System identification.

- b. Location.
- c. Coil type.
- d. Number of rows.
- e. Fin spacing in fins per inch (mm) o.c.
- f. Make and model number.
- g. Face area in sq. ft. (sq. m).
- h. Tube size in NPS (DN).
- i. Tube and fin materials.
- j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

- a. Air flow rate in cfm (L/s).
- b. Average face velocity in fpm (m/s).
- c. Air pressure drop in inches wg (Pa).
- d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).
- e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
- f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
- g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
- h. Water flow rate in gpm (L/s).
- i. Water pressure differential in feet of head or psig (kPa).
- j. Entering-water temperature in deg F (deg C).
- k. Leaving-water temperature in deg F (deg C).

G. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:

- a. System identification.
- b. Location.
- c. Make and type.
- d. Model number and size.
- e. Manufacturer's serial number.
- f. Arrangement and class.
- g. Sheave make, size in inches (mm), and bore.
- h. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).

2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches (mm), and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- g. Number, make, and size of belts.

- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Suction static pressure in inches wg (Pa).
- H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F (deg C).
 - d. Duct static pressure in inches wg (Pa).
 - e. Duct size in inches (mm).
 - f. Duct area in sq. ft. (sq. m).
 - g. Indicated air flow rate in cfm (L/s).
 - h. Indicated velocity in fpm (m/s).
 - i. Actual air flow rate in cfm (L/s).
 - j. Actual average velocity in fpm (m/s).
 - k. Barometric pressure in psig (Pa).
- I. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft. (sq. m).
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm (L/s).
 - b. Air velocity in fpm (m/s).
 - c. Preliminary air flow rate as needed in cfm (L/s).
 - d. Preliminary velocity as needed in fpm (m/s).
 - e. Final air flow rate in cfm (L/s).
 - f. Final velocity in fpm (m/s).
 - g. Space temperature in deg F (deg C).

- J. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm (L/s).
 - b. Entering-water temperature in deg F (deg C).
 - c. Leaving-water temperature in deg F (deg C).
 - d. Water pressure drop in feet of head or psig (kPa).
 - e. Entering-air temperature in deg F (deg C).
 - f. Leaving-air temperature in deg F (deg C).
- K. Instrument Calibration Reports:
 - 1. Report Data:
 - Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.14 INSPECTIONS

- A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
 - 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

- 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.
- 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Architect shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- 3. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 4. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

3.15 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

END OF SECTION

SECTION 230700 HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Insulation Materials:
 - a. Flexible elastomeric.
 - b. Mineral fiber.
 - 2. Adhesives.
 - 3. Mastics.
 - 4. Lagging adhesives.
 - 5. Sealants.
 - 6. Factory-applied jackets.
 - 7. Field-applied fabric-reinforcing mesh.
 - 8. Field-applied jackets.
 - 9. Tapes.
 - 10. Securements.
- B. Related Sections:
 - 1. Division 22 Section "Plumbing Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

22-12358 HVAC INSULATION 230700 - 1 of 18

1.5 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

22-12358 HVAC INSULATION 230700 - 2 of 18

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville: Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; All-Service Duct Wrap.
- H. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Micro-Lok.
 - b. Knauf Insulation; 1000 Pipe Insulation.
 - c. Manson Insulation Inc.; Alley-K.
 - d. Owens Corning; Fiberglas Pipe Insulation.
 - Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ, K=0.23 Btu-in/hr-ft²-°F at 75 °F mean temperature. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation: Rubatex Contact Adhesive.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.

22-12358 HVAC INSULATION 230700 - 3 of 18

- 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Speedline Vinyl Adhesive.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-52.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
 - c. Marathon Industries, Inc.; 130.

22-12358 HVAC INSULATION 230700 - 4 of 18

- d. Mon-Eco Industries, Inc.; 11-30.
- e. Vimasco Corporation; 136.
- 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation.
- 3. Service Temperature Range: Minus 50 to plus 180 deg F.
- 4. Color: White.

2.5 SEALANTS

A. Joint Sealants:

- 1. Materials shall be compatible with insulation materials, jackets, and substrates.
- 2. Permanently flexible, elastomeric sealant.
- 3. Service Temperature Range: Minus 100 to plus 300 deg F.
- 4. Color: White or gray.
- 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. FSK and Metal Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.: 405.
 - d. Mon-Eco Industries, Inc.: 44-05.
 - e. Vimasco Corporation; 750.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: Aluminum.
- 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; CP-76.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: White.
- 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

22-12358 HVAC INSULATION 230700 - 5 of 18

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric for Pipe Insulation: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. inch for covering pipe and pipe fittings.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Vimasco Corporation; Elastafab 894.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

22-12358 HVAC INSULATION 230700 - 7 of 18

- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 - d. Venture Tape: 1506 CW NS.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - b. Compac Corp.; 120.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

22-12358 HVAC INSULATION 230700 - 8 of 18

2.10 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
- C. Wire: 0.080-inch nickel-copper alloy or 0.062-inch soft-annealed, stainless steel or 0.062-inch soft-annealed, galvanized steel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an
 epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F.
 Consult coating manufacturer for appropriate coating materials and application methods for
 operating temperature range.

2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

22-12358 HVAC INSULATION 230700 - 10 of 18

- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at [2 inches] [4 inches] o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.

- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping"irestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

- A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.

22-12358 HVAC INSULATION 230700 - 12 of 18

- c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
- d. Do not overcompress insulation during installation.
- e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
- f. Impale insulation over anchor pins and attach speed washers.
- g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
- 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from aluminum, at least 0.050 inch thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

22-12358 HVAC INSULATION 230700 - 13 of 18

3.6 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by

22-12358 HVAC INSULATION 230700 - 14 of 18

tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.

22-12358 HVAC INSULATION 230700 - 15 of 18

2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

22-12358 HVAC INSULATION 230700 - 16 of 18

- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1/2 inch thick.

- b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
- B. Chilled Water:
 - 1. NPS 6 and Smaller: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Mineral-Fiber, Preformed Pipe, Type I, 1 inch thick.
- C. Refrigerant Suction and Hot-Gas Piping and Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. PVC: 20 mils thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. Aluminum, Stucco Embossed with Z-Shaped Locking Seam: 0.016 inch thick.

END OF SECTION

22-12358 HVAC INSULATION 230700 - 18 of 18

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections apply to this Section.

1.2 DESCRIPTION

- A. General: The control system shall consist of a high-speed, peer-to-peer network of DDC controllers, a control system server, and a web-based operator interface.
- B. System software shall be based on a server/thin client architecture, designed around the open standards of web technology. The control system server shall be accessed using a Web browser over the control system network, the owner's local area network, and (at the owner's discretion) over the Internet.
- C. The intent of the thin-client architecture is to provide operators complete access to the control system via a Web browser. No special software other than a web browser shall be required to access graphics, point displays, and trends, configure trends, configure points and controllers, or to download programming into the controllers.
- D. System shall use the BACnet protocol for communication to the operator workstation or web server and for communication between control modules. I/O points, schedules, setpoints, trends and alarms specified in the "Sequence of Operations" on the plans shall be BACnet objects. Communication between the web server and the user's browser shall be HTTP or HTTPS protocol utilizing HTML5. Use of Adobe Flash technology is not acceptable.

1.3 APPROVED CONTROL SYSTEM MANUFACTURERS

A. The following are approved control system suppliers, manufacturers, and product lines:

Supplier	Manufacturer	Product Line
Pacific West Controls, Inc.	Automated Logic Corporation	WebCTRL
American Building Automation	Automated Logic Corporation	WebCTRL
Air Systems, Inc.	Automated Logic Corporation	WebCTRL

The above list does not indicate order of preference. Inclusion on this list does not guarantee acceptance of products or installation. Control systems shall comply with the terms of this specification.

- The Contractor shall use only operator workstation software, controller software, custom application programming language, and controllers from the corresponding manufacturer and product line unless Owner approves use of multiple manufacturers.
- 2. Other products specified herein (such as sensors, valves, dampers, and actuators) need not be manufactured by the above manufacturers.

1.4 QUALITY ASSURANCE

- A. Installer and Manufacturer Qualifications
 - 1. Installer shall have an established working relationship with Control System Manufacturer and have, as a minimum, 5 years demonstrated experience with installation and support of the manufacturer's product.
 - 2. Installer shall have successfully completed Control System Manufacturer's control system training. Upon request, Installer shall present record of completed training including course outlines.

1.5 CODES AND STANDARDS

- A. Work, materials, and equipment shall comply with the most restrictive of local, state, and federal authorities' codes and ordinances or these plans and specifications. As a minimum, the installation shall comply with the current editions in effect 30 days prior to the receipt of bids of the following codes:
 - 1. National Electric Code (NEC)
 - 2. California Building Code (CBC)
 - 3. California Mechanical Code (CMC)
 - 4. California Electrical Code (CEC)
 - 5. ANSI/ASHRAE Standard 135, BACnet A Data Communication Protocol for Building Automation and Control Systems

1.6 SYSTEM PERFORMANCE

- A. Performance Standards. System shall conform to the following minimum standards over network connections. Systems shall be tested using manufacturer's recommended hardware and software for operator workstation (server and browser for web-based systems).
 - 1. Graphic Display. A graphic with 20 dynamic points shall display with current data within 10 sec.
 - 2. Graphic Refresh. A graphic with 20 dynamic points shall update with current data within 8 sec.and shall automatically refresh every 15 sec.
 - 3. Configuration and Tuning Screens. Screens used for configuring, calibrating, or tuning points, PID loops, and similar control logic shall automatically refresh within 6 sec.
 - 4. Object Command. Devices shall react to command of a binary object within 2 sec. Devices shall begin reacting to command of an analog object within 2 sec.
 - 5. Alarm Response Time. An object that goes into alarm shall be annunciated at the workstation within 45 sec.
 - 6. Program Execution Frequency. Custom and standard applications shall be capable of running as often as once every 5 sec. Select execution times consistent with the mechanical process under control.
 - 7. Performance. Programmable controllers shall be able to completely execute DDC PID control loops at a frequency adjustable down to once per sec. Select execution times consistent with the mechanical process under control.
 - 8. Multiple Alarm Annunciation. Each workstation on the network shall receive alarms within 5 sec of other workstations.
 - 9. Reporting Accuracy. System shall report values with minimum end-to-end accuracy listed in Table 1.

10. Control Stability and Accuracy. Control loops shall maintain measured variable at setpoint within tolerances listed in Table 2.

Table-1 Reporting Accuracy

Measured Variable	Reported Accuracy
Space Temperature	±0.5°C (±1°F)
Ducted Air	±0.5°C (±1°F)
Outside Air	±1.0°C (±2°F)
Dew Point	±1.5°C (±3°F)
Water Temperature	±0.5°C (±1°F)
Delta-T	±0.15° (±0.25°F)
Relative Humidity	±5% RH
Water Flow	±2% of full scale
Airflow (terminal)	±10% of full scale (see Note 1)
Airflow (measuring stations)	±5% of full scale
Airflow (pressurized spaces)	±3% of full scale
Air Pressure (ducts)	±25 Pa (±0.1 in. w.g.)
Air Pressure (space)	±3 Pa (±0.01 in. w.g.)
Water Pressure	±2% of full scale (see Note 2)
Electrical	±1% of reading (see Note 3)
Carbon Monoxide (CO)	±5% of reading
Carbon Dioxide (CO2)	±50 ppm

Note 1: Accuracy applies to 10%–100% of scale

Note 2: For both absolute and differential pressure

Note 3: Not including utility-supplied meters

Table 2
Control Stability and Accuracy

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.) ±3 Pa (±0.01 in. w.g.)	0–1.5 kPa (0–6 in. w.g.) -25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.0°C (±2.0°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi) ±250 Pa (±1.0 in. w.g.)	MPa (1–150 psi) 0–12.5 kPa (0–50 in. w.g.) differential

1.7 SUBMITTALS

- A. Product Data and Shop Drawings: Meet requirements of Section 01 30 00 on Shop Drawings, Product Data, and Samples. In addition, the contractor shall provide shop drawings or other submittals on hardware, software, and equipment to be installed or provided. No work may begin on any segment of this project until submittals have been approved for conformity with design intent. Provide submittal data in a digital format on suitable digital media such as a USB drive. The submittal data shall be in standard Microsoft (Word, Excel, etc.) or PDF file formats. The shop drawings shall be formatted to fit on 11" x 17" pages and hardware/software product data shall be formatted to fit on 8.5" x 11" pages. When manufacturer's cutsheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Each submitted piece of literature and drawing shall clearly reference the specification and/or drawing that the submittal is to cover. General catalogs shall not be accepted as cutsheets to fulfill submittal requirements. Select and show submittal quantities appropriate to scope of work. Submittal approval does not relieve Contractor of responsibility to supply sufficient quantities to complete work. Submittals shall be provided within 12 weeks of contract award. Submittals shall include:
 - 1. DDC System Hardware
 - a. A complete bill of materials to be used indicating quantity, manufacturer, model number, and relevant technical data of equipment to be used.
 - b. Manufacturer's description and technical data such as performance curves, product specifications, and installation and maintenance instructions for items listed below and for relevant items not listed below:
 - i. Direct digital controllers (controller panels)
 - ii. Transducers and transmitters
 - iii. Sensors (including accuracy data)
 - iv. Actuators
 - v. Valves
 - vi. Relays and switches
 - vii. Control panels
 - viii. Power supplies
 - ix. Batteries
 - x. Operator interface equipment
 - xi. Wiring
 - c. Wiring diagrams and layouts for each control panel. Show termination numbers.
 - d. Schematic diagrams for all field sensors and controllers. Provide floor plans of all sensor locations and control hardware. Riser diagrams showing control network layout, communication protocol, and wire types.
 - 2. Central System Hardware and Software
 - a. A complete bill of material of equipment used indicating quantity, manufacturer, model number, and relevant technical.
 - Manufacturer's description and technical data such as product specifications and installation and maintenance instructions for items listed below and for relevant items furnished under this contract not listed below:
 - i. Central Processing Unit (CPU) or web server
 - ii. Monitors
 - iii. Keyboards

- iv. Power supplies
- v. Battery backups
- vi. Interface equipment between CPU or server and control panels
- vii. Operating System software
- viii. Operator interface software
- ix. Color graphic software
- x. Third-party software
- c. Schematic diagrams for all control, communication, and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show interface wiring to control system.
- d. Network riser diagrams of wiring between central control unit and control panels.

3. Controlled Systems

- a. Riser diagrams showing control network layout, communication protocol, and wire types.
- b. A schematic diagram of each controlled system. The schematics shall have all control points labeled with point names shown or listed. The schematics shall graphically show the location of all control elements in the system.
- c. A schematic wiring diagram of each controlled system. Label control elements and terminals. Where a control element is also shown on control system schematic, use the same name.
- d. An instrumentation list (Bill of Materials) for each controlled system. List each control system element in a table. Show element name, type of device, manufacturer, model number, and product data sheet number.
- e. A mounting, wiring, and routing plan-view drawing. The design shall take into account HVAC, electrical, and other systems' design and elevation requirements. The drawing shall show the specific location of all concrete pads and bases and any special wall bracing for panels to accommodate this work.
- f. A complete description of the operation of the control system, including sequences of operation. The description shall include and reference a schematic diagram of the controlled system.
- g. A point list for each control system. List I/O points and software points required to provide specified sequence of operations. Indicate alarmed and trended points.
- 4. Quantities of items submitted shall be reviewed but are the responsibility of the Contractor.
- 5. Description of process, report formats, and checklists to be used in Section 23 09 23 Article 3.17 (Control System Demonstration and Acceptance).
- 6. BACnet Protocol Implementation Conformance Statement (PICS) for each submitted type of controller and operator interface.

B. Schedules

- Within one month of contract award, provide a schedule of the work indicating the following:
 - a. Intended sequence of work items
 - b. Start date of each work item
 - c. Duration of each work item
 - d. Planned delivery dates for ordered material and equipment and expected lead times

- e. Milestones indicating possible restraints on work by other trades or situations
- 2. Monthly written status reports indicating work completed and revisions to expected delivery dates. Include updated schedule of work.
- C. Project Record Documents.
 - Upon completion of installation, submit three copies of record (as-built)
 documents for approval prior to final completion. Provide record documents in a
 digital format on suitable digital media such as a USB drive. The record
 documents shall be in standard Microsoft (Word, Excel, etc.) or PDF file formats
 except as noted below. Record documentation shall include the following:
 - a. Project Record Drawings.
 - b. Testing and Commissioning Reports and Checklists. Completed versions of reports, checklists, and trend logs used to meet requirements of Section 23 09 23 Article 3.17 (Control System Demonstration and Acceptance).
 - c. Operation and Maintenance (O&M) Manual.
 - d. As-built versions of submittal product data.
 - e. Names, addresses, and telephone numbers of installing contractors and service representatives for equipment and control systems.
 - f. Operator's manual with procedures for operating control systems: logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing setpoints and variables.
 - g. Programming manual or set of manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - h. Engineering, installation, and maintenance manual or set of manuals that explains how to design and install new points, panels, and other hardware; how to perform preventive maintenance and calibration; how to debug hardware problems; and how to repair or replace hardware.
 - Documentation of programs created using custom programming language including setpoints, tuning parameters, and object database. Electronic copies of programs shall meet this requirement if control logic, setpoints, tuning parameters, and objects can be viewed using furnished programming tools.
 - j. Graphic files, programs, and database on magnetic or optical media.
 - k. List of recommended spare parts with part numbers and suppliers.
 - I. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
 - m. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation or web server software, and graphics software.
 - n. Licenses, guarantees, and warranty documents for equipment and systems.
 - o. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.

- 2. Load into the control system for access by the operator through any operator workstation closeout documentation. There shall be a menu or navigation tab to access the documentation. The documentation can be loaded into the control system in a pdf format. The following documentation shall be included:
 - a. As-built control diagrams including wiring diagrams and sequences of operations for each controller/piece of equipment.
 - b. All IOM data as follows:
 - i. IOM from each equipment manufacturer for each piece of equipment (AHU's, FCU's, Chillers, Pumps, etc.)
 - ii. IOM for each control module and each device installed in the system.
- D. Training Materials: Provide course outline and materials for each class at least six weeks before first class. Training shall be furnished via instructor-led sessions, computer-based training, or web-based training. Engineer will modify course outlines and materials if necessary to meet Owner's needs. Engineer will review and approve course outlines and materials at least three weeks before first class.

1.8 WARRANTY

- A. Warrant work as follows:
 - 1. Warrant labor and materials for specified control system free from defects for a period of 12 months after final acceptance. Control system failures during warranty period shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner. Respond during normal business hours within 24 hours of Owner's warranty service request.
 - 2. Work shall have a single warranty date, even if Owner receives beneficial use due to early system start-up. If specified work is split into multiple contracts or a multi-phase contract, each contract or phase shall have a separate warranty start date and period.
 - 3. If the engineer determines that equipment and systems operate satisfactorily at the end of final start-up, testing, and commissioning phase, the engineer will certify in writing that control system operation has been tested and accepted in accordance with the terms of this specification. Date of acceptance shall begin warranty period.
 - 4. All Manufacturer's software/firmware for web server/workstation and controllers shall be updated to the latest versions that are available from the manufacturer within 30 days from the date of the end of the warranty. These updates shall be installed and checked out before the end of the warranty.
 - 5. Provide updates to operator workstation or web server software, project-specific software, graphic software, database software, and firmware that resolve the contractor-identified software deficiencies at no charge during warranty period. If available, Owner can purchase in-warranty service agreement to receive upgrades for functional enhancements associated with above-mentioned items. Do not install updates or upgrades without Owner's written authorization.
 - 6. Exception: Contractor shall not be required to warrant reused devices except those that have been rebuilt or repaired and factory recertified. Installation labor and materials shall be warranted. Demonstrate operable condition of reused devices at time of Engineer's acceptance.

1.9 OWNERSHIP OF PROPRIETARY MATERIAL

- A. Project-specific software and documentation shall become Owner's property. This includes, but is not limited to:
 - 1. Graphics
 - 2. Record drawings
 - 3. Database
 - 4. Application programming code
 - 5. Documentation

1.10 DEFINITIONS

Term	Definition
Advanced Application Controller (AAC)	A fully programmable control module. This control module may be capable of some of the ad-vanced features found in Building Controllers (storing trends, initiating read and write requests, etc.) but it does not serve as a master controller. Advanced Application Controllers may reside on either the Ethernet/IP backbone or on a subnet.
Application Specific Controller (ASC)	A pre-programmed control module which is intended for use in a specific application. ASCs may be configurable, in that the user can choose between various pre-programmed options, but it does not support full custom programming. ASCs are often used on terminal equipment such as VAV boxes or fan coil units. In many vendors' architectures ASCs do not store trends or schedules but instead rely upon a Building Controller to provide those functions.
BACnet Interoperability Building Blocks (BIBB)	A BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBS are combined to build the BACnet functional requirements for a device in a specification.
BACnet/BACnet Standard	BACnet communication requirements as defined by the latest version of ASHRAE/ANSI 135 and approved addenda.
Building Controller (BC)	A fully programmable control module which is capable of storing trends and schedules, serving as a router to devices on a subnet, and initiating read and write requests to other controllers. Typically this controller is located on the Ethernet/IP backbone of the BAS. In many vendors' architectures a Building Controller will serve as a master controller, storing schedules and trends for controllers on a subnet underneath the Build-ing Controller.
Control Systems Server	A computer(s) that maintain(s) the systems configuration and programming database.
Controller	Intelligent stand-alone control device. Controller is a generic reference to building controllers, custom application controllers, and application specific controllers.
Direct Digital Control (DDC)	Microprocessor-based control including Analog/Digital conversion and program logic.

Term	Definition
Gateway	Bi-directional protocol translator connecting control systems that use different communication protocols.
Local Area Network	Computer or control system communications network limited to local building or campus.
Loop or control loop	Most commonly a PID control loop. Typically a control loop will include a setpoint, an input which is compared to the setpoint, and an output which controls some action based upon the difference between the input and the setpoint. A PID control loop will also include gains for the proportional, integral, and derivative response as well as an interval which controls how frequently the control loop updates its output. These gains may be adjustable by the end user for control loop "tuning," but in self-tuning control loops or loops which have been optimized for a specific application the gains may not be
Master-Slave/Token	Data link protocol as defined by the BACnet standard.
Point-to-Point	Serial communication as defined in the BACnet standard.
Primary Controlling LAN	High speed, peer-to-peer controller LAN connecting BCs and optionally AACs and ASCs. Refer to System Architecture below.
Protocol Implementation Conformance Statement (PICS)	A written document that identifies the particular options specified by BACnet that are implemented in a device.
Router	A device that connects two or more networks at the network layer.
Web services	Web services are a standard method of exchanging data between computer systems using the XML (extensible markup language) and SOAP (simple object access proto-col) standards. Web services can be used at any level within a Building Automation System (BAS), but most commonly they are used to transfer data between BAS using different protocols or between a BAS and a non-BAS system such as a tenant billing system or a utility management system.
Wiring	Raceway, fittings, wire, boxes and related items.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products the manufacturer is currently manufacturing and selling for use in new installations. Do not use this installation as a product test site unless explicitly approved in writing by Owner. Spare parts shall be available for at least five years after completion of this contract.

2.2 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135, BACnet.
- B. Install new wiring and network devices as required to provide a complete and workable control network.
- C. All IP based controllers shall be capable of providing IPv4 and IPv6 protocol standards as defined by the Internet Data Communications Standard.
- D. Use existing Ethernet backbone for network segments marked "existing" on project drawings.
- E. Each controller shall have a communication port for temporary connection to a laptop computer or other operator interface. Connection shall support memory downloads and other commissioning and troubleshooting operations.
- F. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, and control algorithms shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute control strategies specified in Section 23 09 93. An authorized operator shall be able to edit cross-controller links by typing a standard object address or by using a point-and-click interface.
- G. Workstations, Building Control Panels, and Controllers with real-time clocks shall use the BACnet Time Synchronization service. System shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight saving and standard time as applicable.
- H. System shall be expandable to at least twice the required BACnet objects with additional controllers, associated devices, and wiring. No additional licensing/software fees shall be required to add controllers, associated devices, and wiring.
- I. System shall support Web services data exchange with any other system that complies with XML (extensible markup language) and SOAP (simple object access protocol) standards specified by the Web Services Interoperability Organization(WS-I) Basic Profile 1.0 or higher. Web services support shall as a minimum be provided at the workstation or web server level and shall enable data to be read from or written to the system.
 - 1. System shall support Web services read data requests by retrieving requested trend data or point values (I/O hardware points, analog value software points, or binary value software points) from any system controller or from the trend history database.
 - 2. System shall support Web services write data request to each analog and binary object that can be edited through the system operator interface by downloading a numeric value to the specified object.
 - 3. For read or write requests, the system shall require user name and password authentication and shall support SSL (Secure Socket Layer) or equivalent data encryption.

4. System shall support discovery through a Web services connection or shall provide a tool available through the Operator Interface that will reveal the path/identifier needed to allow a third party Web services device to read data from or write data to any object in the system which supports this service.

2.3 OPERATOR INTERFACE

- A. The Operator Workstation or server shall conform to the BACnet Operator Workstation (B-OWS) or BACnet Advanced Workstation (B-AWS) device profile as specified in ASHRAE/ANSI 135 BACnet Annex L. This includes the ability to configure and/or reconfigure the system from the client device (change programs, graphics, labels, etc.).
- B. Operator Interface. Web server shall reside on high-speed network with building controllers. Each standard browser connected to server shall be able to access all system information. Mobile devices shall be recognized by the web server and shall supply the appropriate system content as needed.
- C. Communication. Web server or workstation and controllers shall communicate using BACnet protocol, including BACnet/SC. Web server or workstation and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ANSI/ASHRAE 135, BACnet Annex J. Communication between the web server and client (workstation) shall be HTTP or HTTPS protocol utilizing HTML5 language. Use of Adobe Flash in any part of the communication infrastructure is not acceptable.
- D. Hardware. Each workstation or web server shall consist of the following:
 - 1. Web server and/or workstation. Industry-standard hardware shall meet or exceed DDC system manufacturer's recommended specifications and shall meet response times specified elsewhere in this document. The web server may also be configured in client/server fashion to accommodate a "workstation" definition. In "workstation" configuration, the workstation will also perform as a server supplying additional clients as needed. The following hardware requirements also apply:
 - a. The hard disk shall have sufficient memory to store:
 - i. All required operator workstation software.
 - ii. A DDC database at least twice the size of the delivered system database.
 - iii. One year of trend data based on the points specified to be trended at their specified trend intervals.
 - b. Provide additional hardware (communication ports, video drivers, network interface cards, cabling, etc.) to facilitate all control functions and software requirements specified for the DDC system.
 - c. Minimum hardware configuration shall include the following:
 - i. Quad Core Processor
 - ii. 4-24 GB RAM (size dependent on size of system)
 - iii. 500 GB hard disk providing data at 3.0 Gb/sec (size dependent on historical data storage requirements)
 - iv. 16x DVD+/-RW drive
 - v. Qwerty Keyboard
 - vi. Optical Mouse
 - vii. 24-inch LED Color monitor with 75Hz refresh rate and 1080P resolution to provide a minimum screen resolution of 1920 x 1080 pixels.

viii. Serial, parallel, and network communication ports and cables as required for proper DDC system operation

E. System Software.

- Operating System. Web server or workstation shall have an industry-standard professional-grade operating system. Operating system shall meet or exceed the DDC System manufacturers minimum requirements for their software. Typically acceptable systems include Microsoft Windows 8.1 or 10, Windows Server 2012 R2 or 2016 or 2019 or 2020, Red Hat Enterprise Linux 8.3, or Ubuntu Desktop 18.04 or 20.04 LTS.
- 2. Security. The web server application shall support Transport Layer Security (TLS) 1.3 capable of encryption of up to 256 bit elliptical curve for transmitting private information over the Internet using HTTPS. Additionally, the web server shall have SHA-2 certificate support capability.
- 3. Database. System shall support any JDBC (Java DataBase Connectivity) compliant engine. This includes: MS SQL, My SQL, Apache Derby, PostgreSQL and Oracle.
- 4. The BMS system shall allow an unlimited number of concurrent users.
- 5. The BMS manufacturer shall provide all software and tools necessary to provide the following capabilities:
 - a. Create and/or edit any programming used in controllers
 - b. Create and/or edit any graphics used in the system
 - c. Software shall not be subscription based and be given to owner at time of turnover. If software is subscription based, manufacturer shall include 10 years of subscription service.
 - d. The owner shall have the ability to install software on a minimum of five (5) additional owner furnished computers without additional licenses or fees.
- 6. System Graphics. The operator interface software shall be graphically based and shall include at least one graphic per piece of equipment or occupied zone, graphics for each chilled water and hot water system, and graphics that summarize conditions on each floor of each building included in this contract. Indicate thermal comfort on floor plan summary graphics using dynamic colors to represent zone temperature relative to zone setpoint.
 - a. Minimum graphics resolution shall be 1920 x 1080 for display of detailed system graphics.
 - b. Floor plan graphics. Floor plan graphics shall be capable of allowing the floor plan graphic to dynamically size relative to the end user's monitor resolution.
 - c. Functionality. Graphics shall allow operator to monitor system status, to view a summary of the most important data for each controlled zone or piece of equipment, to use point-and-click navigation between zones or equipment, and to edit setpoints and other specified parameters.
 - d. Animation. Graphics shall be able to animate by displaying different image files for changed object status.
 - e. Alarm Indication. Indicate areas or equipment in an alarm condition using color or other visual indicator.
 - f. Format. Graphics shall be saved in an industry-standard format such as BMP, JPEG, PNG, GIF, or SVG. Web-based system graphics shall be viewable on browsers compatible with World Wide Web Consortium browser standards. Web graphic format shall require no

- plug-in (such as HTML and JavaScript) or shall only require widely available no-cost plug-ins (such as Active-X and Adobe Flash).
- 7. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in the same formats as are used for system graphics.
- 8. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- F. System Applications. System shall provide the following functionality to authorized operators as an integral part of the operator interface or as stand-alone software programs. If furnished as part of the interface, the tool shall be available from each workstation or web browser interface. If furnished as a stand-alone program, software shall be installable on standard IBM-compatible PCs with no limit on the number of copies that can be installed under the system license.
 - 1. Automatic System Database Configuration. Each workstation or web server shall store on its hard disk a copy of the current system database, including controller firmware and software. Stored database shall be automatically updated with each system configuration or controller firmware or software change.
 - 2. Manual Controller Memory Download. Operators shall be able to download memory from the system database to each controller.
 - System Configuration. The workstation software shall provide a method of configuring the system. This shall allow for future system changes or additions by users under proper password protection. Operators shall be able to configure the system.
 - 4. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
 - 5. Security. Each operator shall be required to log on to the system with user name and password in order to view, edit, add, or delete data.
 - a. Operator Access. The user name and password combination shall define accessible viewing, editing, adding, and deleting privileges for that operator. Users with system administrator rights shall be able to create new users and edit the privileges of all existing users. System Administrators shall also be able to vary and deny each operator's privileges based on the geographic location, such as the ability to edit operating parameters in Building A, to view but not edit parameters in Building B, and to not even see equipment in Building C.
 - b. Password Policy Rules. System administrator shall invoke policies for minimum password strength, including number of characters, special characters and numbers, upper and lower case, etc.
 - c. Automatic Log Out. Automatically log out each operator if no keyboard or mouse activity is detected. This auto logoff time shall be user adjustable.

- d. Encrypted Security Data. Store system security data including operator passwords in an encrypted format. System shall not display operator passwords.
- 6. System Diagnostics. The system shall automatically monitor the operation of all building management panels and controllers. The failure of any device shall be annunciated to the operator.
- 7. Alarm Processing. System input and status objects shall be configurable to alarm on departing from and on returning to normal state. Operator shall be able to enable or disable each alarm and to configure alarm limits, alarm limit differentials, alarm states, and alarm reactions for each system object. Configure and enable alarm points as required by sequences of operation. Alarms shall be BACnet alarm objects and shall use BACnet alarm services. BMS system shall be capable of assigning alarm sources to categories such as HVAC critical, or HVAC general. The BMS shall include at a minimum HVAC and FDD categories. BMS system shall allow user to create custom alarm categories.
- 8. Alarm Messages. Alarm messages shall use the English language descriptor for the object in alarm in such a way that the operator will be able to recognize the source, location, and nature of the alarm without relying on acronyms or mnemonics.
- 9. Alarm Reactions. Operator shall be able to configure (by object) what, if any actions are to be taken during an alarm. As a minimum, the workstation or web server shall be able to log, print, start programs, display messages, send e-mail, send SMS text, and audibly annunciate.
- 10. Alarm and Event log. Operators shall be able to view all system alarms and changes of state from any location in the system. Events shall be listed chronologically. An operator with the proper security level may acknowledge and delete alarms, and archive closed alarms to the workstation or web server hard disk
- 11. Trend Logs. The operator shall be able to configure trend sample or change of value (COV) interval, start time, and stop time for each system data object and shall be able to retrieve data for use in spreadsheets and standard database programs. Controller shall sample and store trend data and shall be able to archive data to the hard disk. Configure trends as specified by the sequences of operation. Trends shall be BACnet trend objects.
- 12. Object and Property Status and Control. Provide a method for the operator to view, and edit if applicable, the status of any object or property in the system. The status shall be available by menu, on graphics, or through custom programs.
- 13. Reports and Logs. Operator shall be able to select, to modify, to create, and to print reports and logs. Operator shall be able to store report data in a format accessible by standard spreadsheet and word processing programs.
- 14. Audit and Security Detail. All users accessing the system shall have their actions recorded. Information recorded shall include:
 - a. Login/logout time and date
 - b. System modifications with before and after values
 - c. Ability to report user activity based on individual and/or date and time.
- 15. Standard Reports. Furnish the following standard system reports:
 - a. Objects. System objects and current values filtered by object type, by status (in alarm, locked, normal), by equipment, by geographic location, or by combination of filter criteria.

- b. Alarm Summary. Current alarms and closed alarms. System shall retain closed alarms for an adjustable period.
- c. Logs. System shall log the following to a database or text file and shall retain data for an adjustable period:
 - i. Alarm History.
 - ii. Trend Data. Operator shall be able to select trends to be logged.
 - iii. Operator Activity. At a minimum, system shall log operator log in and log out, control parameter changes, schedule changes, and alarm acknowledgment and deletion. System shall date and time stamp logged activity.
- 16. Energy Reports. System shall include an easily configured energy reporting tool that provides the capabilities described in this section.
 - a. The energy reporting tool shall be accessible through the same user interface (Web browser or operator workstation software) as is used to manage the BAS.
 - b. The energy reporting tool shall be preconfigured by the Contractor to gather and store energy demand and consumption data from each energy source that provides metered data to the BAS. Meter data shall be stored at 5 minute intervals unless otherwise specified in the Sequence of Operation provided in section 23 09 93. This data shall be maintained in an industry standard SQL database for a period of not less than five years.
 - c. The energy reporting tool shall allow the operator to select an energy source and a time period of interest (day, week, month, year, or date range) and shall provide options to view the data in a table, line graph, bar graph, or pie chart. The tool shall also allow the operator to select two or more data sources and display a comparison of the energy used over this period in any of the listed graph formats, or to total the energy used by the selected sources and display that data in the supported formats.
 - d. The energy reporting tool shall allow the operator to select and energy source and two time periods of interest (day, week, month, year, or date range) and display a graph that compares the energy use over the two time periods in any of the graph formats listed in the previous paragraph. The tool shall also allow the operator to select multiple energy sources and display a graph that compares the total energy used by these sources over the two time periods.
 - e. The energy reporting tool shall allow the operator to easily generate the previously described graphs "on the fly," and shall provide an option to store the report format so the operator can select that format to regenerate the graph at a future date. The tool shall also allow the user to schedule these reports to run on a recurring basis using relative time periods, such as automatically generating a consumption report on the first Monday of each month showing consumption over the previous month. Automatically generated reports shall be archived on the server in a common industry format such as Adobe PDF or Microsoft Excel with copies e-mailed to a user editable list of recipients.

- f. The energy reporting tool shall be capable of collecting and displaying data from the following types of meters:
 - i. Electricity
 - ii. Gas
 - iii. Oil
 - iv. Steam
 - v. Chilled Water
 - vi. Potable Water
 - vii. Heating and cooling degree days. (May be calculated from sensor data rather than metered.)
- g. The user shall have the option of using Kw (Kwh) or Btu/hr (Btu) as the units for demand and consumption reports. Multiples of these units (MWH, kBtu, etc.) shall be used as appropriate. All selected sources shall be automatically converted to the selected units. The user shall similarly have the option of entering facility area and occupancy hours and creating reports that are normalized on an area basis, an annual use basis, or an occupied hour basis.
- h. The user shall have the option of entering benchmark data for an individual facility or a group of facilities.
- i. The user shall have the option of displaying any or all of the following data on any chart, line, or bar graph generated by the energy reporting tool:
 - Low/High/Average value of the metered value being displayed.
 - ii. Heating and/or Cooling Degree Days for the time period(s) being displayed.
- 17. Custom Reports. Operator shall be able to create custom reports that retrieve data, including archived trend data, from the system, that analyze data using common algebraic calculations, and that present results in tabular or graphical format. Reports shall be launched from the operator interface. Operator shall be able to schedule reports to automatically run and be emailed to recipients on a recurring basis from the BMS system.
- G. Workstation Application Editors. Each PC or browser workstation shall support editing of all system applications. The applications shall be downloaded and executed at one or more of the controller panels.
 - 1. Controller. Provide a full-screen editor for each type of application that shall allow the operator to view and change the configuration, name, control parameters, and set points for all controllers.
 - 2. Scheduling. An editor for the scheduling application shall be provided at each workstation. Provide a method of selecting the desired schedule and schedule type. Exception schedules and holidays shall be shown clearly on the calendar. The start and stop times for each object shall be adjustable from this interface.
 - 3. Custom Application Programming. Provide the tools to create, edit, debug, and download custom programs. System shall be fully operable while custom programs are edited, compiled, and downloaded. Programming language shall have the following features:
 - a. Language. Language shall be graphically based or English oriented. If graphically based, language shall use function blocks arranged in a logic diagram that clearly shows control logic flow. Function blocks shall directly provide functions listed below, and operators shall be able to create custom or compound function blocks. If English

- language oriented, language shall be based on the syntax of BASIC, FORTRAN, C, or PASCAL, and shall allow for free-form programming that is not column-oriented or "fill-in-the-blanks."
- b. Programming Environment. Tool shall provide a full-screen, cursor-and-mouse-driven programming environment that incorporates word processing features such as cut and paste. Operators shall be able to insert, add, modify, and delete custom programming code, and to copy blocks of code to a file library for reuse in other control programs.
- c. Independent Program Modules. Operator shall be able to develop independently executing program modules that can disable, enable and exchange data with other program modules.
- d. Debugging and Simulation. Operator shall be able to step through the program observing intermediate values and results. Operator shall be able to adjust input variables to simulate actual operating conditions. Operator shall be able to adjust each step's time increment to observe operation of delays, integrators, and other time-sensitive control logic. Debugger shall provide error messages for syntax and for execution errors.
- e. Conditional Statements. Operator shall be able to program conditional logic using compound Boolean (AND, OR, and NOT) and relational (EQUAL, LESS THAN, GREATER THAN, NOT EQUAL) comparisons.
- f. Mathematical Functions. Language shall support floating-point addition, subtraction, multiplication, division, and square root operations, as well as absolute value calculation and programmatic selection of minimum and maximum values from a list of values.
- g. Variables. Operator shall be able to use variable values in program conditional statements and mathematical functions.
 - i. Time Variables. Operator shall be able to use predefined variables to represent time of day, day of the week, month of the year, and date. Other predefined variables or simple control logic shall provide elapsed time in seconds, minutes, hours, and days. Operator shall be able to start, stop, and reset elapsed time variables using the program language.
 - ii. System Variables. Operator shall be able to use predefined variables to represent status and results of Controller Software and shall be able to enable, disable, and change setpoints of Controller Software as described in Controller Software section.
- H. Portable Operator's Terminal. Provide all necessary software to configure an IBM-compatible laptop computer for use as a Portable Operator's Terminal. Operator shall be able to connect configured Terminal to the system network or directly to each controller for programming, setting up, and troubleshooting.

2.4 CONTROLLER SOFTWARE

- A. All controller software applications shall reside and operate in the system controllers.
- B. All application software in controllers furnished by BMS manufacturer shall be editable through operator workstation, web browser interface, or workstation.
- C. Each controller furnished by BMS manufacturer shall have all of its local on board software applications backed up and saved to the BMS web server. In the event of a

- controller failure, the BMS server shall download backed up software applications to replacement controller. Controllers furnished by others and integrated into the BMS are not required to be backed up to BMS server.
- D. Furnish the following applications for building and energy management.
 - 1. System Security. See Paragraph 2.3.E.5 (Security) and Paragraph 2.3.E.14.c.iii (Operator Activity).
 - 2. Scheduling. Provide the capability to execute control functions according to a user created or edited schedule. Each schedule shall provide the following schedule options as a minimum:
 - a. Weekly Schedule. Provide separate schedules for each day of the week. Each schedule shall be able to include up to 5 occupied periods (5 start-stop pairs or 10 events).
 - b. Exception Schedules. Provide the ability for the operator to designate any day of the year as an exception schedule. Exception schedules may be defined up to a year in advance. Once an exception schedule has executed, the system shall discard and replace the exception schedule with the standard schedule for that day of the week.
 - c. Holiday Schedules. Provide the capability for the operator to define up to 24 special or holiday schedules. These schedules will be repeated each year. The operator shall be able to define the length of each holiday period.
 - 3. System Coordination. Operator shall be able to group related equipment based on function and location and to use these groups for scheduling and other applications.
 - 4. Binary Alarms. Each binary object shall have the capability to be configured to alarm based on the operator-specified state. Provide the capability to automatically and manually disable alarming.
 - 5. Analog Alarms. Each analog object shall have both high and low alarm limits. The operator shall be able to enable or disable these alarms.
 - 6. Alarm Reporting. The operator shall be able to determine the action to be taken in the event of an alarm. An alarm shall be able to start programs, print, be logged in the event log, generate custom messages, and display on graphics.
 - 7. Remote Communication. System shall automatically contact operator workstation or server on receipt of critical alarms. If no network connection is available, system shall use a modem connection.
 - 8. Demand Limiting.
 - a. The demand-limiting program shall monitor building power consumption from a building power meter (provided by others) which generates pulse signals or a BACnet communications interface. An acceptable alternative is for the system to monitor a watt transducer or current transformer attached to the building feeder lines.
 - b. When power consumption exceeds adjustable levels, system shall automatically adjust setpoints, de-energize low-priority equipment, and take other programmatic actions to reduce demand as specified in Section 23 09 93 (Sequences of Operation). When demand drops below adjustable levels, system shall restore loads as specified.
- E. Maintenance Management. The system shall be capable of generating maintenance alarms when equipment exceeds adjustable runtime, equipment starts, or performance limits. Configure and enable maintenance alarms as specified in sequences of operation.

- F. Sequencing. Application software shall sequence chillers, boilers, and pumps as specified in sequences of operation.
- G. PID Control. System shall provide direct- and reverse-acting PID (proportional-integral-derivative) algorithms. Each algorithm shall have anti-windup and selectable controlled variable, setpoint, and PID gains. Each algorithm shall calculate a time-varying analog value that can be used to position an output or to stage a series of outputs. The calculation interval, PID gains, and other tuning parameters shall be adjustable by a user with the correct security level.
- H. Staggered Start. System shall stagger controlled equipment restart after power outage. Operator shall be able to adjust equipment restart order and time delay between equipment restarts.
- I. Energy Calculations.
 - 1. The system shall accumulate and convert instantaneous power (kW) or flow rates (L/s [gpm]) to energy usage data.
 - 2. The system shall calculate a sliding-window average (rolling average). Operator shall be able to adjust window interval to 15 minutes, 30 minutes, or 60 minutes.
- J. Anti-Short Cycling. All binary output objects shall be protected from short cycling by means of adjustable minimum on-time and off-time settings.
- K. On and Off Control with Differential. Provide an algorithm that allows a binary output to be cycled based on a controlled variable and a setpoint. The algorithm shall be direct-acting or reverse-acting.
- L. Runtime Totalization. Provide software to totalize runtime for each binary input and output. Operator shall be able to enable runtime alarm based on exceeded adjustable runtime limit. Configure and enable runtime totalization and alarms as required by sequences of operation.

2.5 CONTROLLERS

A. General. Provide an adequate number of Building Controllers (BC), Advanced Application Controllers (AAC), Application Specific Controllers (ASC), Smart Actuators (SA), and Smart Sensors (SS) as required to achieve performance specified in Section 23 09 23 Article 1.9 (System Performance). Every device in the system which executes control logic and directly controls HVAC equipment must conform to a standard BACnet Device profile as specified in ANSI/ASHRAE 135, BACnet Annex L. Unless otherwise specified, hardwired actuators and sensors may be used in lieu of BACnet Smart Actuators and Smart Sensors.

B. BACnet.

- Building Controllers (BCs). Each BC shall conform to BACnet Building Controller (B-BC) device profile as specified in ANSI/ASHRAE 135, BACnet Annex L, and shall be listed as a certified B-BC in the BACnet Testing Laboratories (BTL) Product Listing.
- 2. Advanced Application Controllers (AACs). Each AAC shall conform to BACnet Advanced Application Controller (B-AAC) device profile as specified in ANSI/ASHRAE 135, BACnet Annex L and shall be listed as a certified B-AAC in the BACnet Testing Laboratories (BTL) Product Listing.
- 3. Application Specific Controllers (ASCs). Each ASC shall conform to BACnet Application Specific Controller (B-ASC) device profile as specified in ANSI/ASHRAE 135, BACnet Annex L and shall be listed as a certified B-ASC in the BACnet Testing Laboratories (BTL) Product Listing.
- 4. Smart Actuators (SAs). An actuator which is controlled by a network connection rather than a binary or analog signal (0-10v, 4-20mA, relay, etc.). Each SA shall conform to BACnet Smart Actuator (B-SA) device profile as specified in

- ANSI/ASHRAE 135, BACnet Annex L and shall be listed as a certified B-SA in the BACnet Testing Laboratories (BTL) Product Listing.
- 5. Smart Sensors (SSs). A sensor which provides information to the BAS via network connection rather than a binary or analog signal (0-10000 ohm, 4-20mA, dry contact, etc.). Each SS shall conform to BACnet Smart Sensor (B-SS) device profile as specified in ANSI/ASHRAE 135, BACnet Annex L and shall be listed as a certified B-SS in the BACnet Testing Laboratories (BTL) Product Listing.
- BACnet Communication.
 - Each BC shall reside on or be connected to a BACnet network using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing.
 - b. BACnet routing shall be performed by BCs or other BACnet device routers as necessary to connect BCs to networks of AACs and ASCs.
 - c. Each AAC shall reside on a BACnet network using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol with BACnet/IP addressing, or it shall reside on a BACnet network using the ARCNET or MS/TP Data Link/Physical layer protocol.
 - d. Each ASC shall reside on a BACnet network using the ARCNET or MS/TP Data Link/Physical layer protocol.
 - e. Each SA shall reside on a BACnet network using the ARCNET or MS/TP Data Link/Physical layer protocol.
 - f. Each SS shall reside on a BACnet network using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol with BACnet/IP addressing, or it shall reside on a BACnet network using ARCNET or MS/TP Data Link/Physical layer protocol.
- C. Security.
 - 1. Provide BACnet firewall capability, as defined in the BACnet standard.
- D. Building Controllers (BC)
 - 1. Communication
 - a. Network Connection. Controller shall support a single point ethernet connection.
 - b. Ethernet Port. Provide one (1) Gig-E port capable of full duplex communication up to 1000 Mbps
 - c. Service Port. Each controller shall provide a service communication port for connection to a Portable Operator's Terminal. Connection shall be extended to space temperature sensor ports where shown on drawings.
 - d. Serial Port. Provide two (2) serial ports for communication to serial BACnet or serial Modbus networks.
 - e. Signal Management. BC and ASC operating systems shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and to allow for central monitoring and alarms.
 - f. Data Sharing. Each BC and AAC shall share data as required with each networked BC and AAC.
 - g. Stand-Alone Operation. Each piece of equipment shall be controlled by a single controller to provide stand-alone control in the event of communication failure. All I/O points specified for a piece of equipment shall be integral to its controller. Provide stable and reliable stand-alone control using default values or other method for

- values normally read over the network such as outdoor air conditions, supply air or water temperature coming from source equipment, etc.
- 2. Environment. Controller hardware shall be suitable for anticipated ambient conditions.
 - a. Controllers used outdoors or in wet ambient conditions shall be mounted in waterproof enclosures and shall be rated for operation at -29°C to 60°C (-20°F to 140°F).
 - b. Controllers used in conditioned space shall be mounted in dust-protective enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).
- 3. Keypad. Provide a local keypad and display for each BC and AAC. Operator shall be able to use keypad to view and edit data. Keypad and display shall require password to prevent unauthorized use. If the manufacturer does not normally provide a keypad and display for each BC and AAC, provide the software and any interface cabling needed to use a laptop computer as a Portable Operator's Terminal for the system.
- 4. Real-Time Clock. Controller shall have a real-time clock to keep track of time in the event of a power failure for up to three (3) days.
- 5. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to a field-removable modular terminal strip or to a termination card connected by a ribbon cable. Each BC and AAC shall continually check its processor and memory circuit status and shall generate an alarm on abnormal operation. System shall continuously check controller network and generate alarm for each controller that fails to respond.
- 6. Memory.
 - a. Controller memory shall support operating system, database, and programming requirements.
 - b. Each BC shall use nonvolatile memory and shall retain BIOS and application programming in the event of power loss. System shall automatically download dynamic control parameters following power loss.
- E. Advanced Application/Specific Controllers (AAC/ASC)
 - 1. Communication
 - a. Network Connection. Controller shall support a single point ethernet connection or a daisy-chained ethernet connection using the Spanning Tree Protocol (STP).
 - b. Ethernet Port. Provide two (2) 10/100 Base T ethernet ports with ethernet switching capability.
 - c. Service Port. Provide one (1) USB port for connection to a Portable Operator's Terminal or a display.
 - d. Serial Port. Provide two (2) serial ports for communication to serial BACnet or serial Modbus networks.
 - e. Stand-Alone Operation. Each piece of equipment shall be controlled by a single controller to provide stand-alone control in the event of communication failure. All I/O points specified for a piece of equipment shall be integral to its controller. Provide stable and reliable stand-alone control using default values or other method for values normally read over the network such as outdoor air conditions, supply air or water temperature coming from source equipment, etc.

- 2. Environment. Controller hardware shall be suitable for anticipated ambient conditions.
 - a. Controllers used outdoors or in wet ambient conditions shall be mounted in waterproof enclosures and shall be rated for operation at -29°C to 60°C (-20°F to 140°F).
 - b. Controllers used in conditioned space shall be mounted in dust-protective enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).
- 3. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to a field-removable modular terminal strip or to a termination card connected by a ribbon cable. Each BC and AAC shall continually check its processor and memory circuit status and shall generate an alarm on abnormal operation. System shall continuously check controller network and generate alarm for each controller that fails to respond.
- 4. Real-time Clock. Controller shall have a real-time clock to keep track of time in the event of a power failure for up to three (3) days.
- 5. Memory
 - a. Controller memory shall support operating system, database, and programming requirements.
 - b. Each AAC shall use nonvolatile memory and shall retain BIOS and application programming in the event of power loss. System shall automatically download dynamic control parameters following power loss.
- F. Immunity to Power and Noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage.
- G. Transformer. Power supply shall be fused or current limiting and shall be rated at a minimum of 125% of controller power consumption.

2.6 INPUT AND OUTPUT INTERFACE

- A. General. Hard-wire input and output points to BCs, AACs, ASCs, or SAs.
- B. Protection. All input points and output points shall be protected such that shorting of the point to itself, to another point, or to ground shall cause no damage to the controller. All input and output points shall be protected from voltage up to 24 V of any duration, such that contact with this voltage will cause no controller damage.
- C. Binary Inputs. Binary inputs shall allow the monitoring of ON/OFF signals from remote devices. The binary inputs shall provide a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against contact bounce and noise. Binary inputs shall sense dry contact closure without application of power external to the controller.
- D. Pulse Accumulation Inputs. Pulse accumulation inputs shall conform to binary input requirements and shall also accumulate up to 10 pulses per second.
- E. Analog Inputs. Analog inputs shall monitor low-voltage (0–10 Vdc), current (4–20 mA), or resistance (thermistor or RTD) signals. Analog inputs shall be compatible with and field configurable to commonly available sensing devices.
- F. Binary Outputs. Binary outputs shall provide for ON/OFF operation or a pulsed low-voltage signal for pulse width modulation control. Binary outputs on Building Controllers shall have three-position (on-off-auto) override switches and status lights. Outputs shall be selectable for normally open or normally closed operation.

- G. Analog Outputs. Analog outputs shall provide a modulating signal for the control of end devices. Outputs shall provide either a 0–10 Vdc or a 4–20 mA signal as required to properly control output devices. Each Building Controller analog output shall have a two-position (auto-manual) switch, a manually adjustable potentiometer, and status lights. Analog outputs shall not drift more than 0.4% of range annually.
- H. Tri-State Outputs. Control three-point floating electronic actuators without feedback with tri-state outputs (two coordinated binary outputs). Tri-State outputs may be used to provide analog output control in zone control and terminal unit control applications such as VAV terminal units, duct-mounted heating coils, and zone dampers.
- I. System Object Capacity. The system size shall be expandable to at least twice the number of input/ output objects required for this project. Additional controllers (along with associated devices and wiring) shall be all that is necessary to achieve this capacity requirement. The operator interfaces installed for this project shall not require any hardware additions or software revisions in order to expand the system.
- J. Universal Inputs and Outputs. Inputs and outputs that can be designated as either binary or analog in software shall conform to the provisions of this section that are appropriate for their designated use.

2.7 POWER SUPPLIES AND LINE FILTERING

- A. Power Supplies. Control transformers shall be UL listed. Furnish Class 2 current-limiting type or furnish over-current protection in primary and secondary circuits for Class 2 service in accordance with NEC requirements. Limit connected loads to 80% of rated capacity.
 - 1. DC power supply output shall match output current and voltage requirements. Unit shall be full-wave rectifier type with output ripple of 5.0 mV maximum peak-to-peak. Regulation shall be 1.0% line and load combined, with 100-microsecond response time for 50% load changes. Unit shall have built-in over-voltage and over-current protection and shall be able to withstand 150% current overload for at least three seconds without trip-out or failure.
 - a. Unit shall operate between 0°C and 50°C (32°F and 120°F). EM/RF shall meet FCC Class B and VDE 0871 for Class B and MILSTD 810C for shock and vibration.
 - b. Line voltage units shall be UL recognized and CSA listed.
- B. Power Line Filtering.
 - 1. Provide internal or external transient voltage and surge suppression for workstations and controllers. Surge protection shall have:
 - a. Dielectric strength of 1000 V minimum
 - b. Response time of 10 nanoseconds or less
 - c. Transverse mode noise attenuation of 65 dB or greater
 - d. Common mode noise attenuation of 150 dB or greater at 40–100 Hz

2.8 AUXILIARY CONTROL DEVICES

- A. Motorized Control Dampers, unless otherwise specified elsewhere, shall be as follow.
 - 1. Type. Control dampers shall be the parallel or opposed-blade type as specified below or as scheduled on drawings.
 - a. Outdoor and return air mixing dampers and face-and-bypass dampers shall be parallel-blade and shall direct airstreams toward each other.
 - b. Other modulating dampers shall be opposed-blade.

- c. Two-position shutoff dampers shall be parallel- or opposed-blade with blade and side seals.
- 2. Frame. Damper frames shall be 2.38 mm (13 gauge) galvanized steel channel or 3.175 mm ($\frac{1}{8} \text{ in.}$) extruded aluminum with reinforced corner bracing.
- 3. Blades. Damper blades shall not exceed 20 cm (8 in.) in width or 125 cm (48 in.) in length. Blades shall be suitable for medium velocity (10 m/s [2000 fpm]) performance. Blades shall be not less than 1.5875 mm (16 gauge).
- 4. Shaft Bearings. Damper shaft bearings shall be as recommended by manufacturer for application, oil impregnated sintered bronze, or better.
- 5. Seals. Blade edges and frame top and bottom shall have replaceable seals of butyl rubber or neoprene. Side seals shall be spring-loaded stainless steel. Blade seals shall leak no more than 50 L/s·m²(10 cfm per ft²) at 1000 Pa (4 in. w.g.) differential pressure. Blades shall be airfoil type suitable for wide-open face velocity of 7.5 m/s (1500 fpm).
- 6. Sections. Individual damper sections shall not exceed 125 cm × 150 cm (48 in. × 60 in.). Each section shall have at least one damper actuator.
- 7. Modulating dampers shall provide a linear flow characteristic where possible.
- 8. Linkages. Dampers shall have exposed linkages.
- B. Electric Damper and Valve Actuators.
 - 1. Stall Protection. Mechanical or electronic stall protection shall prevent actuator damage throughout the actuator's rotation.
 - 2. Spring-return Mechanism. Actuators used for power-failure and safety applications shall have an internal mechanical spring-return mechanism or an uninterruptible power supply (UPS).
 - 3. Signal and Range. Proportional actuators shall accept a 0–10 Vdc or a 0–20 mA control signal and shall have a 2–10 Vdc or 4–20 mA operating range. (Floating motor actuators may be substituted for proportional actuators in terminal unit applications as described in paragraph 2.6H.)
 - 4. Wiring. 24 Vac and 24 Vdc actuators shall operate on Class 2 wiring.
 - 5. Manual Positioning. Operators shall be able to manually position each actuator when the actuator is not powered. Non-spring-return actuators shall have an external manual gear release. Spring-return actuators with more than 7 N·m (60 in.-lb) torque capacity shall have a manual crank.
- C. Temperature Sensors.
 - 1. Type. Temperature sensors shall be Resistance Temperature Device (RTD) or thermistor.
 - 2. Duct Sensors. Duct sensors shall be single point or averaging as shown. Averaging sensors shall be a minimum of 1.5 m (5 ft) in length per 1 m²(10 ft²) of duct cross-section.
 - 3. Space Sensors. Space sensors shall have override switch and communication port only.
 - 4. Differential Sensors. Provide matched sensors for differential temperature measurement.
- D. Humidity Sensors.
 - 1. Duct and room sensors shall have a sensing range of 20%–80%.
 - 2. Duct sensors shall have a sampling chamber.
 - 3. Outdoor air humidity sensors shall have a sensing range of 20%–95% RH and shall be suitable for ambient conditions of -40°C–75°C (-40°F–170°F).
 - 4. Humidity sensors shall not drift more than 1% of full scale annually.

E. Relays.

- 1. Control Relays. Control relays shall be plug-in type, UL listed, and shall have dust cover and LED "energized" indicator. Contact rating, configuration, and coil voltage shall be suitable for application.
- 2. Time Delay Relays. Time delay relays shall be solid-state plug-in type, UL listed, and shall have adjustable time delay. Delay shall be adjustable ±100% from setpoint shown. Contact rating, configuration, and coil voltage shall be suitable for application. Provide NEMA 1 enclosure for relays not installed in local control panel.

F. Override Timers.

 Unless implemented in control software, override timers shall be spring-wound line voltage, UL Listed, with contact rating and configuration required by application. Provide 0–6 hour calibrated dial unless otherwise specified. Flush mount timer on local control panel face or where shown.

G. Current Transmitters.

- AC current transmitters shall be self-powered, combination split-core current transformer type with built-in rectifier and high-gain servo amplifier with 4–20 mA two-wire output. Full-scale unit ranges shall be 10 A, 20 A, 50 A, 100 A, 150 A, and 200 A, with internal zero and span adjustment. Unit accuracy shall be ±1% full-scale at 500 ohm maximum burden.
- 2. Transmitter shall meet or exceed ANSI/ISA S50.1 requirements and shall be UL/CSA recognized.
- 3. Unit shall be split-core type for clamp-on installation on existing wiring.

H. Current Transformers.

- 1. AC current transformers shall be UL/CSA recognized and shall be completely encased (except for terminals) in approved plastic material.
- 2. Transformers shall be available in various current ratios and shall be selected for ±1% accuracy at 5 A full-scale output.
- 3. Use fixed-core transformers for new wiring installation and split-core transformers for existing wiring installation.

I. Voltage Transmitters.

- 1. AC voltage transmitters shall be self-powered single-loop (two-wire) type, 4–20 mA output with zero and span adjustment.
- 2. Adjustable full-scale unit ranges shall be 100–130 Vac, 200–250 Vac, 250–330 Vac, and 400–600 Vac. Unit accuracy shall be ±1% full-scale at 500 ohm maximum burden.
- 3. Transmitters shall meet or exceed ANSI/ISA S50.1 requirements and shall be UL/CSA recognized at 600 Vac rating.

J. Voltage Transformers.

- 1. AC voltage transformers shall be UL/CSA recognized, 600 Vac rated, and shall have built-in fuse protection.
- 2. Transformers shall be suitable for ambient temperatures of 4°C–55°C (40°F–130°F) and shall provide ±0.5% accuracy at 24 Vac and 5 VA load.
- 3. Windings (except for terminals) shall be completely enclosed with metal or plastic.

K. Power Monitors.

- Selectable rate pulse output for kWh reading, 4–20 mA output for kW reading, N.O. alarm contact, and ability to operate with 5.0 amp current inputs or 0–0.33 volt inputs.
- 2. 1.0% full-scale true RMS power accuracy, +0.5 Hz, voltage input range 120–600 V, and auto range select.

- 3. Under voltage/phase monitor circuitry.
- 4. NEMA 1 enclosure.
- 5. Current transformers having a 0.5% FS accuracy, 600 VAC isolation voltage with 0–0.33 V output. If 0–5 A current transformers are provided, a three-phase disconnect/shorting switch assembly is required.

L. Current Switches.

- Current-operated switches shall be self-powered, solid-state with adjustable trip current. Select switches to match application current and DDC system output requirements.
- M. Pressure Transducers.
 - 1. Transducers shall have linear output signal and field-adjustable zero and span.
 - 2. Transducer sensing elements shall withstand continuous operating conditions of positive or negative pressure 50% greater than calibrated span without damage.
- N. Differential Pressure Switches. Differential pressure switches (air or water service) shall be UL listed, SPDT snap-acting, pilot duty rated (125 VA minimum) and shall have scale range and differential suitable for intended application and NEMA 1 enclosure unless otherwise specified.
- O. Pressure-Electric (PE) Switches.
 - Shall be metal or neoprene diaphragm actuated, operating pressure rated for 0– 175 kPa (0–25 psig), with calibrated scale minimum setpoint range of 14–125 kPa (2–18 psig) minimum, UL listed.
 - 2. Provide one- or two-stage switch action (SPDT, DPST, or DPDT) as required by application Electrically rated for pilot duty service (125 VA minimum) and/or for motor control.
 - 3. Switches shall be open type (panel-mounted) or enclosed type for remote installation. Enclosed type shall be NEMA 1 unless otherwise specified.
 - 4. Each pneumatic signal line to PE switches shall have permanent indicating gauge.
- P. Occupancy Sensors. Occupancy sensors shall utilize Passive Infrared (PIR) and/or Microphonic Passive technology to detect the presence of people within a room. Sensors shall be mounted as indicated on the approved drawings. The sensor output shall be accessible by any lighting and/or HVAC controller in the system. Occupancy sensors shall be capable of being powered from the lighting or HVAC control panel, as shown on the drawings. Occupancy sensor delay shall be software adjustable through the user interface and shall not require manual adjustment at the sensor.
- Q. Local Control Panels.
 - All indoor control cabinets shall be fully enclosed NEMA 1 construction with (hinged door) key-lock latch and removable subpanels. A single key shall be common to all field panels and subpanels.
 - 2. Interconnections between internal and face-mounted devices shall be prewired with color-coded stranded conductors neatly installed in plastic troughs and/or tie-wrapped. Terminals for field connections shall be UL listed for 600 volt service, individually identified per control/ interlock drawings, with adequate clearance for field wiring. Control terminations for field connection shall be individually identified per control drawings.
 - 3. Provide ON/OFF power switch with overcurrent protection for control power sources to each local panel.

2.9 WIRING AND RACEWAYS

A. General. Provide copper wiring, plenum cable, and raceways as specified in applicable sections of Division 26.

B. Insulated wire shall use copper conductors and shall be UL listed for 90°C (200°F) minimum service

2.10 FIBER OPTIC CABLE SYSTEM

- A. Optical Cable. Optical cables shall be duplex 900 mm tight-buffer construction designed for intra-building environments. Sheath shall be UL listed OFNP in accordance with NEC Article 770. Optical fiber shall meet the requirements of FDDI, ANSI X3T9.5 PMD for 62.5/125mm.
- B. Connectors. Field terminate optical fibers with ST type connectors. Connectors shall have ceramic ferrules and metal bayonet latching bodies.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. The project plans shall be thoroughly examined for control device and equipment locations. Any discrepancies, conflicts, or omissions shall be reported to the architect/engineer for resolution before rough-in work is started.
- B. The contractor shall inspect the site to verify that equipment may be installed as shown. Any discrepancies, conflicts, or omissions shall be reported to the engineer for resolution before rough-in work is started.
- C. The contractor shall examine the drawings and specifications for other parts of the work. If head room or space conditions appear inadequate—or if any discrepancies occur between the plans and the contractor's work and the plans and the work of others—the contractor shall report these discrepancies to the engineer and shall obtain written instructions for any changes necessary to accommodate the contractor's work with the work of others. Any changes in the work covered by this specification made necessary by the failure or neglect of the contractor to report such discrepancies shall be made by—and at the expense of—this contractor.

3.2 PROTECTION

- A. The contractor shall protect all work and material from damage by his/her work or employees and shall be liable for all damage thus caused.
- B. The contractor shall be responsible for his/her work and equipment until finally inspected, tested, and accepted. The contractor shall protect any material that is not immediately installed. The contractor shall close all open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

3.3 COORDINATION

A. Site

1. Where the mechanical work will be installed in close proximity to, or will interfere with, work of other trades, the contractor shall assist in working out space conditions to make a satisfactory adjustment. If the contractor installs his/her work before coordinating with other trades, so as to cause any interference with work of other trades, the contractor shall make the necessary changes in his/her work to correct the condition without extra charge.

- 2. Coordinate and schedule work with other work in the same area and with work dependent upon other work to facilitate mutual progress.
- B. Submittals. See Section 23 09 23 Article 1.10 (Submittals).
- C. Test and Balance.
 - 1. The contractor shall furnish a single set of all tools necessary to interface to the control system for test and balance purposes.
 - 2. The contractor shall provide training in the use of these tools. This training will be planned for a minimum of 4 hours.
 - 3. In addition, the contractor shall provide a qualified technician to assist in the test and balance process, until the first 20 terminal units are balanced.
 - 4. The tools used during the test and balance process will be returned at the completion of the testing and balancing.

D. Life Safety.

- 1. Duct smoke detectors required for air handler shutdown are provided under Division 28. Interlock smoke detectors to air handlers for shutdown as specified in sequences of operation.
- 2. Smoke dampers and actuators required for duct smoke isolation are provided under Division 23. Interlock smoke dampers to air handlers as specified in sequences of operation.
- 3. Fire and smoke dampers and actuators required for fire-rated walls are provided under Division 23. Fire and smoke damper control is provided under Division 28.
- E. Coordination with controls specified in other sections or divisions. Other sections and/or divisions of this specification include controls and control devices that are to be part of or interfaced to the control system specified in this section. These controls shall be integrated into the system and coordinated by the contractor as follows:
 - 1. All communication media and equipment shall be provided as specified in Section 23 09 23 Article 2.2 (Communication).
 - 2. Each supplier of a controls product is responsible for the configuration, programming, start up, and testing of that product to meet the sequences of operation specified.
 - 3. The contractor shall coordinate and resolve any incompatibility issues that arise between control products provided under this section and those provided under other sections or divisions of this specification.
 - 4. The contractor is responsible for providing all controls described in the contract documents regardless of where within the contract documents these controls are described.
 - 5. The contractor is responsible for the interface of control products provided by multiple suppliers regardless of where this interface is described within the contract documents.

3.4 GENERAL WORKMANSHIP

- A. Install equipment, piping, and wiring/raceway parallel to building lines (i.e. horizontal, vertical, and parallel to walls) wherever possible.
- B. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- C. Install equipment in readily accessible locations as defined by Chapter 1 Article 100 Part A of the National Electrical Code (NEC).
- D. Verify integrity of all wiring to ensure continuity and freedom from shorts and grounds.

E. All equipment, installation, and wiring shall comply with industry specifications and standards for performance, reliability, and compatibility and be executed in strict adherence to local codes and standard practices.

3.5 FIELD QUALITY CONTROL

- A. All work, materials, and equipment shall comply with rules and regulations of applicable local, state, and federal codes and ordinances as identified in Section 23 09 23 Article 1.8 (Codes and Standards).
- B. Contractor shall continually monitor the field installation for code compliance and quality of workmanship.
- C. Contractor shall have work inspection by local and/or state authorities having jurisdiction over the work.

3.6 WIRING

- A. All control and interlock wiring shall comply with national and local electrical codes, and Division 26 of this specification, Where the requirements of this section differ from Division 26, the requirements of this section shall take precedence.
- B. All NEC Class 1 (line voltage) wiring shall be UL listed in approved raceway according to NEC and Division 26 requirements.
- C. All low-voltage wiring shall meet NEC Class 2 requirements. Low-voltage power circuits shall be subfused when required to meet Class 2 current limit.
- D. Where NEC Class 2 (current-limited) wires are in concealed and accessible locations, including ceiling return air plenums, approved cables not in raceway may be used provided that cables are UL listed for the intended application.
- E. All wiring in mechanical, electrical, or service rooms or where subject to mechanical damage shall be installed in raceway at levels below 3 m (10ft).
- F. Do not install Class 2 wiring in raceways containing Class 1 wiring. Boxes and panels containing high-voltage wiring and equipment may not be used for low-voltage wiring except for the purpose of interfacing the two (e.g. relays and transformers).
- G. Do not install wiring in raceway containing tubing.
- H. Where Class 2 wiring is run exposed, wiring is to be run parallel along a surface or perpendicular to it and neatly tied at 3 m (10 ft) intervals.
- I. Where plenum cables are used without raceway, they shall be supported from or anchored to structural members. Cables shall not be supported by or anchored to ductwork, electrical raceways, piping, or ceiling suspension systems.
- J. All wire-to-device connections shall be made at a terminal block or terminal strip. All wire-to-wire connections shall be at a terminal block.
- K. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.
- L. Maximum allowable voltage for control wiring shall be 120 V. If only higher voltages are available, the contractor shall provide step-down transformers.
- M. All wiring shall be installed as continuous lengths, with no splices permitted between termination points.
- N. Install plenum wiring in sleeves where it passes through walls and floors. Maintain fire rating at all penetrations.
- O. Size of raceway and size and type of wire type shall be the responsibility of the contractor in keeping with the manufacturer's recommendations and NEC requirements, except as noted elsewhere.
- P. Include one pull string in each raceway 2.5 cm (1 in.) or larger.

- Q. Use color-coded conductors throughout with conductors of different colors.
- R. Control and status relays are to be located in designated enclosures only. These enclosures include packaged equipment control panel enclosures unless they also contain Class 1 starters.
- S. Conceal all raceways except within mechanical, electrical, or service rooms. Install raceway to maintain a minimum clearance of 15 cm (6 in.) from high-temperature equipment (e.g. steam pipes or flues).
- T. Secure raceways with raceway clamps fastened to the structure and spaced according to code requirements. Raceways and pull boxes may not be hung on flexible duct strap or tie rods. Raceways may not be run on or attached to ductwork.
- U. Adhere to this specification's Division 26 requirements where raceway crosses building expansion joints.
- V. Install insulated bushings on all raceway ends and openings to enclosures. Seal top end of vertical raceways.
- W. The contractor shall terminate all control and/or interlock wiring and shall maintain updated (as-built) wiring diagrams with terminations identified at the job site.
- X. Flexible metal raceways and liquid-tight flexible metal raceways shall not exceed 1 m (3 ft) in length and shall be supported at each end. Flexible metal raceway less than ½ in. electrical trade size shall not be used. In areas exposed to moisture, including chiller and boiler rooms, liquid-tight, flexible metal raceways shall be used.
- Y. Raceway must be rigidly installed, adequately supported, properly reamed at both ends, and left clean and free of obstructions. Raceway sections shall be joined with couplings (according to code). Terminations must be made with fittings at boxes, and ends not terminating in boxes shall have bushings installed.

3.7 COMMUNICATION WIRING

- A. The contractor shall adhere to the items listed in the "Wiring" article in Part 3 of the specification.
- B. All cabling shall be installed in a neat and workmanlike manner. Follow manufacturer's installation recommendations for all communication cabling
- C. Do not install communication wiring in raceways and enclosures containing Class 1 or other Class 2 wiring.
- D. Maximum pulling, tension, and bend radius for the cable installation, as specified by the cable manufacturer, shall not be exceeded during installation.
- E. Contractor shall verify the integrity of the entire network following cable installation. Use appropriate test measures for each particular cable.
- F. When a cable enters or exits a building, a lightning arrestor must be installed between the lines and ground. The lighting arrestor shall be installed according to manufacturer's instructions.
- G. All runs of communication wiring shall be unspliced length when that length is commercially available.
- H. All communication wiring shall be labeled to indicate origination and destination data.
- I. Grounding of coaxial cable shall be in accordance with NEC regulations article on "Communications Circuits, Cable, and Protector Grounding."
- J. BACnet IP, Arcnet, or MS/TP communications wiring shall be installed in accordance with ASHRAE/ANSI Standard 135. This includes but is not limited to:
 - 1. IP
- a. The network shall use Cat5e or greater cabling for connections.
- b. Custom made patch cables must use either the T568A or T568 wiring standard and must use the same standard on both ends of the cable.

2. Arcnet

- a. The network shall use shielded, twisted-pair cable with characteristic impedance between 100 nominal. Distributed capacitance between conductors shall be less than 12.5 pF per foot (41 pF per meter.)
- b. The maximum length of an Arcnet segment is 610 meters (2000 ft) with AWG 22 cable.
- c. The maximum number of nodes per segment shall be 32, as specified in the EIA 485 standard. Additional nodes may be accommodated by the use of repeaters.
- d. An Arcnet network shall have no T connections

3. MS/TP

- a. The network shall use shielded, twisted-pair cable with characteristic impedance between 100 and 120 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter (30 pF per foot.)
- b. The maximum length of an MS/TP segment is 1200 meters (4000 ft) with AWG 18 cable. The use of greater distances and/or different wire gauges shall comply with the electrical specifications of EIA-485.
- c. The maximum number of nodes per segment shall be 32, as specified in the EIA 485 standard. Additional nodes may be accommodated by the use of repeaters.
- d. An MS/TP EIA-485 network shall have no T connections.

3.8 FIBER OPTIC CABLE

- A. Maximum pulling tensions as specified by the cable manufacturer shall not be exceeded during installation. Post-installation residual cable tension shall be within cable manufacturer's specifications.
- B. All cabling and associated components shall be installed in accordance with manufacturers' instructions. Minimum cable and unjacketed fiber bend radii, as specified by cable manufacturer, shall be maintained.

3.9 INSTALLATION OF SENSORS

- A. Install sensors in accordance with the manufacturer's recommendations.
- B. Mount sensors rigidly and adequately for environment within which the sensor operates.
- C. Room temperature sensors shall be installed on concealed junction boxes properly supported by wall framing.
- D. All wires attached to sensors shall be sealed in their raceways or in the wall to stop air transmitted from other areas from affecting sensor readings.
- E. Sensors used in mixing plenums and hot and cold decks shall be of the averaging type. Averaging sensors shall be installed in a serpentine manner vertically across the duct. Each bend shall be supported with a capillary clip.
- F. Low-limit sensors used in mixing plenums shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip. Provide 3 m (1 ft) of sensing element for each 1 m²(1 ft²) of coil area.
- G. Do not install temperature sensors within the vapor plume of a humidifier. If installing a sensor downstream of a humidifier, install it at least 3 m (10 ft) downstream.
- H. All pipe-mounted temperature sensors shall be installed in wells. Install liquid temperature sensors with heat-conducting fluid in thermal wells.

- I. Install outdoor air temperature sensors on north wall, complete with sun shield at designated location.
- J. Differential Air Static Pressure.
 - 1. Supply Duct Static Pressure. Pipe the high-pressure tap to the duct using a pitot tube. Pipe the low-pressure port to a tee in the high-pressure tap tubing of the corresponding building static pressure sensor (if applicable) or to the location of the duct high-pressure tap and leave open to the plenum.
 - 2. Return Duct Static Pressure. Pipe high-pressure tap to duct using a pitot tube. Pipe the low-pressure port to a tee in the low-pressure tap tubing of the corresponding building static pressure sensor.
 - 3. Building Static Pressure. Pipe the low-pressure port of the pressure sensor to the static pressure port located on the outside of the building through a high-volume accumulator. Pipe the high-pressure port to a location behind a thermostat cover.
 - 4. The piping to the pressure ports on all pressure transducers shall contain a capped test port located adjacent to the transducer.
 - 5. All pressure transducers, other than those controlling VAV boxes, shall be located in field device panels, not on the equipment monitored or on ductwork. Mount transducers in a location accessible for service without use of ladders or special equipment.
 - 6. All air and water differential pressure sensors shall have gauge tees mounted adjacent to the taps. Water gauges shall also have shut-off valves installed before the tee.
- K. Smoke detectors, freezestats, high-pressure cut-offs, and other safety switches shall be hard-wired to de-energize equipment as described in the sequence of operation. Switches shall require manual reset. Provide contacts that allow DDC software to monitor safety switch status.
- L. Install humidity sensors for duct mounted humidifiers at least 3 m (10 ft) downstream of the humidifier. Do not install filters between the humidifier and the sensor.

3.10 FLOW SWITCH INSTALLATION

- A. Use correct paddle for pipe diameter.
- B. Adjust flow switch according to manufacturer's instructions.

3.11 ACTUATORS

- A. General. Mount and link control damper actuators according to manufacturer's instructions.
 - 1. To compress seals when spring-return actuators are used on normally closed dampers, power actuator to approximately 5° open position, manually close the damper, and then tighten the linkage.
 - 2. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed positions.
 - 3. Provide all mounting hardware and linkages for actuator installation.

B. Electric/Electronic

- Dampers: Actuators shall be direct mounted on damper shaft or jackshaft unless shown as a linkage installation. For low-leakage dampers with seals, the actuator shall be mounted with a minimum 5° travel available for tightening the damper seal. Actuators shall be mounted following manufacturer's recommendations.
- 2. Valves: Actuators shall be connected to valves with adapters approved by the actuator manufacturer. Actuators and adapters shall be mounted following the actuator manufacturer's recommendations.

3.12 WARNING LABELS

- A. Permanent warning labels shall be affixed to all equipment that can be automatically started by the control system.
 - 1. Labels shall use white lettering (12-point type or larger) on a red background.
 - 2. Warning labels shall read as follows.

CAUTION

This equipment is operating under automatic control and may start or stop at any time without warning. Switch disconnect to "Off" position before servicing.

- B. Permanent warning labels shall be affixed to all motor starters and control panels that are connected to multiple power sources utilizing separate disconnects.
 - 1. Labels shall use white lettering (12-point type or larger) on a red background.
 - 2. Warning labels shall read as follows.

CAUTION

This equipment is fed from more than one power source with separate disconnects. Disconnect all power sources before servicing.

3.13 IDENTIFICATION OF HARDWARE AND WIRING

- A. All wiring and cabling, including that within factory-fabricated panels shall be labeled at each end within 5 cm (2 in.) of termination with control system address or termination number.
- B. All pneumatic tubing shall be labeled at each end within 5 cm (2 in.) of termination with a descriptive identifier.
- C. Permanently label or code each point of field terminal strips to show the instrument or item served.
- D. Identify control panels with minimum 1 cm (½ in.) letters on laminated plastic nameplates.
- E. Identify all other control components with permanent labels. All plug-in components shall be labeled such that label removal of the component does not remove the label.
- F. Identify room sensors related to terminal boxes or valves with nameplates.
- G. Manufacturers' nameplates and UL or CSA labels shall be visible and legible after equipment is installed.
- H. Identifiers shall match record documents.

3.14 CONTROLLERS

- A. Provide a separate controller for each AHU or other HVAC system. A DDC controller may control more than one system provided that all points associated with the system are assigned to the same DDC controller. Points used for control loop reset, such as outside air or space temperature, are exempt from this requirement.
- B. Building Controllers and Custom Application Controllers shall be selected to provide the required I/O point capacity required to monitor all of the points listed in sequences of operation.

3.15 PROGRAMMING

- A. Provide sufficient internal memory for the specified sequences of operation and trend logging.
- B. Point Naming. Coordinate with owner for point naming conventions. Name points as shown on the equipment points list provided with each sequence of operation or as directed by owner. If character limitations or space restrictions make it advisable to shorten the name, abbreviations as coordinated with owner may be used. Where multiple points with the same name reside in the same controller, each point name may be customized with its associated Program Object number. For example, "Zone Temp 1" for Zone 1, "Zone Temp 2" for Zone 2.
- C. Software Programming.
 - 1. Provide programming for the system and adhere to the sequences of operation provided. All other system programming necessary for the operation of the system, but not specified in this document, also shall be provided by the contractor. Embed into the control program sufficient comment statements to clearly describe each section of the program. The comment statements shall reflect the language used in the sequences of operation. Use the appropriate technique based on the following programming types:
 - a. Text-based:
 - i. Must provide actions for all possible situations
 - ii. Must be modular and structured
 - iii. Must be commented
 - b. Graphic-based:
 - i. Must provide actions for all possible situations
 - ii. Must be documented
 - c. Parameter-based:
 - i. Must provide actions for all possible situations
 - ii. Must be documented.
- D. Operator Interface.
 - 1. Standard Graphics. Provide graphics for all mechanical systems and floor plans of the building. This includes each chilled water system, hot water system, chiller, boiler, air handler, and all terminal equipment. Point information on the graphic displays shall dynamically update. Show on each graphic all input and output points for the system. Also show relevant calculated points such as setpoints. As a minimum, show on each equipment graphic the input and output points and relevant calculated points as indicated on the applicable Points List or sequence of operation.

2. The contractor shall provide all the labor necessary to install, initialize, start up, and troubleshoot all operator interface software and its functions as described in this section. This includes any operating system software, the operator interface database, and any third-party software installation and integration required for successful operation of the operator interface.

3.16 CONTROL SYSTEM CHECKOUT AND TESTING

- A. Startup Testing. All testing listed in this article shall be performed by the contractor and shall make up part of the necessary verification of an operating control system. This testing shall be completed before the owner's representative is notified of the system demonstration.
 - 1. The contractor shall furnish all labor and test apparatus required to calibrate and prepare for service of all instruments, controls, and accessory equipment furnished under this specification.
 - 2. Verify that all control wiring is properly connected and free of all shorts and ground faults. Verify that terminations are tight.
 - 3. Enable the control systems and verify calibration of all input devices individually. Perform calibration procedures according to manufacturers' recommendations.
 - 4. Verify that all binary output devices (relays, solenoid valves, two-position actuators and control valves, magnetic starters, etc.) operate properly and that the normal positions are correct.
 - 5. Verify that all analog output devices (I/Ps, actuators, etc.) are functional, that start and span are correct, and that direction and normal positions are correct. The contractor shall check all control valves and automatic dampers to ensure proper action and closure. The contractor shall make any necessary adjustments to valve stem and damper blade travel.
 - 6. Verify that the system operation adheres to the sequences of operation. Simulate and observe all modes of operation by overriding and varying inputs and schedules. Tune all DDC loops.
 - 7. Alarms and Interlocks:
 - a. Check each alarm separately by including an appropriate signal at a value that will trip the alarm.
 - b. Interlocks shall be tripped using field contacts to check the logic, as well as to ensure that the fail-safe condition for all actuators is in the proper direction.
 - c. Interlock actions shall be tested by simulating alarm conditions to check the initiating value of the variable and interlock action

3.17 CONTROL SYSTEM DEMONSTRATION AND ACCEPTANCE

A. Demonstration.

- Prior to acceptance, the control system shall undergo a series of performance tests to verify operation and compliance with this specification. These tests shall occur after the Contractor has completed the installation, started up the system, and performed his/her own tests.
- 2. The tests described in this section are to be performed in addition to the tests that the contractor performs as a necessary part of the installation, start-up, and debugging process and as specified in the "Control System Checkout and Testing" article in Part 3 of this specification. The engineer will

- be present to observe and review these tests. The engineer shall be notified at least 10 days in advance of the start of the testing procedures.
- 3. The demonstration process shall follow that approved in Part 1, "Submittals." The approved checklists and forms shall be completed for all systems as part of the demonstration.
- 4. The contractor shall provide at least two persons equipped with two-way communication and shall demonstrate actual field operation of each control and sensing point for all modes of operation including day, night, occupied, unoccupied, fire/smoke alarm, seasonal changeover, and power failure modes. The purpose is to demonstrate the calibration, response, and action of every point and system. Any test equipment required to prove the proper operation shall be provided by and operated by the contractor.
- 5. As each control input and output is checked, a log shall be completed showing the date, technician's initials, and any corrective action taken or needed.
- 6. Demonstrate compliance with Part 1, "System Performance."
- 7. Demonstrate compliance with sequences of operation through all modes of operation.
- 8. Demonstrate complete operation of operator interface.
- 9. Additionally, the following items shall be demonstrated:
 - a. DDC loop response. The contractor shall supply trend data output in a graphical form showing the step response of each DDC loop. The test shall show the loop's response to a change in set point, which represents a change of actuator position of at least 25% of its full range. The sampling rate of the trend shall be from 10 seconds to 3 minutes, depending on the speed of the loop. The trend data shall show for each sample the set point, actuator position, and controlled variable values. Any loop that yields unreasonably under-damped or over-damped control shall require further tuning by the Contractor.
 - b. Demand limiting. The contractor shall supply a trend data output showing the action of the demand limiting algorithm. The data shall document the action on a minute-by-minute basis over at least a 30-minute period. Included in the trend shall be building kW, demand limiting set point, and the status of sheddable equipment outputs.
 - c. Optimum start/stop. The contractor shall supply a trend data output showing the capability of the algorithm. The change-of-value or change-of-state trends shall include the output status of all optimally started and stopped equipment, as well as temperature sensor inputs of affected areas.
 - d. Interface to the building fire alarm system.
 - e. Operational logs for each system that indicate all set points, operating points, valve positions, mode, and equipment status shall be submitted to the architect/engineer. These logs shall cover three 48-hour periods and have a sample frequency of not more than 10 minutes. The logs shall be provided in both printed and disk formats.
- 10. Any tests that fail to demonstrate the operation of the system shall be repeated at a later date. The contractor shall be responsible for any necessary repairs or revisions to the hardware or software to successfully complete all tests.

B. Acceptance.

- All tests described in this specification shall have been performed to the satisfaction of both the engineer and owner prior to the acceptance of the control system as meeting the requirements of completion. Any tests that cannot be performed due to circumstances beyond the control of the contractor may be exempt from the completion requirements if stated as such in writing by the engineer. Such tests shall then be performed as part of the warranty.
- The system shall not be accepted until all forms and checklists completed as part of the demonstration are submitted and approved as required in Part 1, "Submittals."

3.18 CLEANING

- A. The contractor shall clean up all debris resulting from his/her activities daily. The contractor shall remove all cartons, containers, crates, etc., under his/her control as soon as their contents have been removed. Waste shall be collected and placed in a designated location.
- B. At the completion of work in any area, the contractor shall clean all work, equipment, etc., keeping it free from dust, dirt, and debris, etc.
- C. At the completion of work, all equipment furnished under this section shall be checked for paint damage, and any factory-finished paint that has been damaged shall be repaired to match the adjacent areas. Any cabinet or enclosure that has been deformed shall be replaced with new material and repainted to match the adjacent areas.

3.19 TRAINING

- A. Provide training for a designated staff of Owner's representatives. Training shall be provided via self-paced training, web-based or computer-based training, classroom training, or a combination of training methods.
- B. Training shall enable students to accomplish the following objectives.
 - 1. Day-to-day Operators:
 - a. Proficiently operate the system
 - b. Understand control system architecture and configuration
 - c. Understand DDC system components
 - d. Understand system operation, including DDC system control and optimizing routines (algorithms)
 - e. Operate the workstation and peripherals
 - f. Log on and off the system
 - g. Access graphics, point reports, and logs
 - h. Adjust and change system set points, time schedules, and holiday schedules
 - i. Recognize malfunctions of the system by observation of the printed copy and graphical visual signals
 - j. Understand system drawings and Operation and Maintenance manual
 - k. Understand the job layout and location of control components
 - I. Access data from DDC controllers and ASCs
 - m. Operate portable operator's terminals
 - 2. Advanced Operators:
 - a. Make and change graphics on the workstation

- b. Create, delete, and modify alarms, including annunciation and routing of these
- c. Create, delete, and modify point trend logs and graph or print these both on an ad-hoc basis and at user-definable time intervals
- d. Create, delete, and modify reports
- e. Add, remove, and modify system's physical points
- f. Create, modify, and delete programming
- g. Add panels when required
- h. Add operator interface stations
- i. Create, delete, and modify system displays, both graphical and others
- j. Perform DDC system field checkout procedures
- k. Perform DDC controller unit operation and maintenance procedures
- I. Perform workstation and peripheral operation and maintenance procedures
- m. Perform DDC system diagnostic procedures
- n. Configure hardware including PC boards, switches, communication, and I/O points
- o. Maintain, calibrate, troubleshoot, diagnose, and repair hardware
- p. Adjust, calibrate, and replace system components
- 3. System Managers/Administrators:
 - a. Maintain software and prepare backups
 - b. Interface with job-specific, third-party operator software
 - c. Add new users and understand password security procedures
- C. Organize the training into sessions or modules for the three levels of operators listed above. (Day-to-Day Operators, Advanced Operators, System Managers and Administrators). Students will receive one or more of the training packages, depending on knowledge level required.
- D. Provide course outline and materials according to the "Submittals" article in Part 1 of this specification. Provide one copy of training material per student.
- E. The instructor(s) shall be factory-trained and experienced in presenting this material.
- F. Classroom training shall be done using a network of working controllers representative of installed hardware.

3.20 SEQUENCES OF OPERATION

See Drawings for Sequences of Operations

3.21 CONTROL VALVE INSTALLATION

- A. Valve submittals shall be coordinated for type, quantity, size, and piping configuration to ensure compatibility with pipe design.
- B. Slip-stem control valves shall be installed so that the stem position is not more than 60 degrees from the vertical up position. Ball type control valves shall be installed with the stem in the horizontal position.
- C. Valves shall be installed in accordance with the manufacturer's recommendations.
- D. Control valves shall be installed so that they are accessible and serviceable and so that actuators may be serviced and removed without interference from structure or other pipes and/or equipment.
- E. Isolation valves shall be installed so that the control valve body may be serviced without draining the supply/return side piping system. Unions shall be installed at all connections to screw-type control valves.

F. Provide tags for all control valves indicating service and number. Tags shall be brass, 1.5 inch in diameter, with ¼ inch high letters. Securely fasten with chain and hook. Match identification numbers as shown on approved controls shop drawings.

3.22 CONTROL DAMPER INSTALLATION

- A. Damper submittals shall be coordinated for type, quantity, and size to ensure compatibility with sheet metal design.
- B. Duct openings shall be free of any obstruction or irregularities that might interfere with blade or linkage rotation or actuator mounting. Duct openings shall measure ¼ in. larger than damper dimensions and shall be square, straight, and level.
- C. Individual damper sections, as well as entire multiple section assemblies, must be completely square and free from racking, twisting, or bending. Measure diagonally from upper corners to opposite lower corners of each damper section. Both dimensions must be within 0.3 cm (1/8 in.) of each other.
- D. Follow the manufacturer's instructions for field installation of control dampers. Unless specifically designed for vertical blade application, dampers must be mounted with blade axis horizontal.
- E. Install extended shaft or jackshaft according to manufacturer's instructions. (Typically, a sticker on the damper face shows recommended extended shaft location. Attach shaft on labeled side of damper to that blade.)
- F. Damper blades, axles, and linkage must operate without binding. Before system operation, cycle damper after installation to ensure proper operation. On multiple section assemblies, all sections must open and close simultaneously.
- G. Provide a visible and accessible indication of damper position on the drive shaft end.
- H. Support ductwork in area of damper when required to prevent sagging due to damper weight.
- I. After installation of low-leakage dampers with seals, caulk between frame and duct or opening to prevent leakage around perimeter of damper.

3.23 SMOKE DAMPER INSTALLATION

- A. The contractor shall coordinate all smoke and smoke/fire damper installation, wiring, and checkout to ensure that these dampers function properly and that they respond to the proper fire alarm system general, zone, and/or detector trips. The contractor shall immediately report any discrepancies to the engineer no less than two weeks prior to inspection by the code authority having jurisdiction.
- B. Provide complete submittal data to controls system subcontractor for coordination of duct smoke detector interface to HVAC systems.

3.24 DUCT SMOKE DETECTION

- A. Submit data for coordination of duct smoke detector interface to HVAC systems as required in Part 1, "Submittals."
- B. This Contractor shall provide a dry-contact alarm output in the same room as the HVAC equipment to be controlled.

3.25 CONTROLS COMMUNICATION PROTOCOL

- A. General. The electronic controls packaged with this equipment shall communicate with the building direct digital control (DDC) system. The DDC system shall communicate with these controls to read the information and change the control setpoints as shown in the points list, sequences of operation, and control schematics. The information to be communicated between the DDC system and these controls shall be in the standard object format as defined in ANSI/ASHRAE Standard 135 (BACnet). Controllers shall communicate with other BACnet objects on the internetwork using the Read (Execute) Property service as defined in Clause 15.5 of Standard 135.
- B. Distributed Processing. The controller shall be capable of stand-alone operation and shall continue to provide control functions if the network connection is lost.
- C. I/O Capacity. The controller shall contain sufficient I/O capacity to control the target system.
- D. The Controller shall have a physical connection for a laptop computer or a portable operator's tool.
- E. Environment. The hardware shall be suitable for the anticipated ambient conditions.
 - 1. Controllers used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at 40°C to 60°C (40°F to 140°F).
 - 2. Controllers used in conditioned space shall be mounted in dust-proof enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).
- F. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field removable, modular terminal strips or to a termination card connected by a ribbon cable.
- G. Memory. The Controller shall maintain all BIOS and programming information in the event of a power loss for at least 30 days.
- H. Power. Controller shall be able to operate at 90% to 110% of nominal voltage rating.
- I. Transformer. Power supply for the Controller must be rated at minimum of 125% of ASC power consumption and shall be fused or current limiting type.

3.26 START-UP AND CHECKOUT PROCEDURES

- A. Start up, check out, and test all hardware and software and verify communication between all components.
 - 1. Verify that all control wiring is properly connected and free of all shorts and ground faults. Verify that terminations are tight.
 - 2. Verify that all analog and binary input/output points read properly.
 - 3. Verify alarms and interlocks.
 - 4. Verify operation of the integrated system.

APPENDIX A: Glossary of Terms

Terms used within the Specification Text:

Adjustable (adj.):

Adjustable by the end user, through the supplied user interface.

Advanced Application Controller (AAC):

A fully programmable control module. This control module may be capable of some of the advanced features found in Building Controllers (storing trends, initiating read and write requests, etc.) but it does not serve as a master controller. Advanced Application Controllers may reside on either the Ethernet/IP backbone or on a subnet.

Alarm:

The control system shall be configured to generate an alarm when this object exceeds user definable limits, as described in the Sequence of Controls.

Analog Value:

An intermediate (software) point that may be editable or read-only. Editable AVs are typically used to allow the user to set a fixed control parameter, such as a setpoint. Read Only AVs are typically used to display the status of a control operation.

Application Specific Controller (ASC):

A pre-programmed control module which is intended for use in a specific application. ASCs may be configurable, in that the user can choose between various pre-programmed options, but it does not support full custom programming. ASCs are often used on terminal equipment such as VAV boxes or fan coil units. In many vendors' architectures ASCs do not store trends or schedules but instead rely upon a Building Controller to provide those functions.

BACnet/IP:

An approved BACnet network type which uses an Ethernet carrier and IP addressing.

BACnet MS/TP:

An approved BACnet network type which uses a Master-Slave Token Passing configuration. MS/TP networks are unique to BACnet and utilize EIA485 twisted pair topology running at 9600 to 76,800 bps.

BACnet over ARCNET:

An approved BACnet network type which uses an ARCNET (attached resource computer network) carrier. ARCNET is an industry standard that can utilize several speeds and wiring standards. The most common configuration used by BACnet controllers is an EIA485 twisted

pair topology running at 156,000 bps.

Building Controller (BC):

A fully programmable control module which is capable of storing trends and schedules, serving as a router to devices on a subnet, and initiating read and write requests to other controllers. Typically this controller is located on the Ethernet/IP backbone of the BAS. In many vendors' architectures a Building Controller will serve as a master controller, storing schedules and trends for controllers on a subnet underneath the Building Controller.

• Direct Digital Control (DDC):

A control system in which a digital computer or microprocessor is directly connected to the valves, dampers, and other actuators which control the system, as opposed to indirectly controlling a system by resetting setpoints on an analog pneumatic or electronic controller.

• PICS - Protocol Implementation Conformance Statement:

A written document, created by the manufacturer of a device, which identifies the particular options specified by BACnet that are implemented in the device.

Smart Actuator (SA):

An actuator which is controlled by a network connection rather than a binary or analog signal. (0-10v, 4-20mA, relay, etc.)

Smart Sensor (SS):

A sensor which provides information to the BAS via network connection rather than a binary or analog signal. (0-10000 ohm, 4-20mA, dry contact, etc.)

Web services:

Web services are a standard method of exchanging data between computer systems using the XML (extensible markup language) and SOAP (simple object access protocol) standards. Web services can be used at any level within a Building Automation System (BAS), but most commonly they are used to transfer data between BAS using different protocols or between a BAS and a non-BAS system such as a tenant billing system or a utility management system.

Terms used within the Sequences of Operation:

adj.

Adjustable by the end user, through the supplied user interface.

AI, AO, etc. (Column Headings on Points List)

Al = Analog Input. A physical input to the control module.

AO = Analog Output. A physical output from the control module.

AV = Analog Value. An intermediate (software) point that may be editable or read-only. Editable AVs are typically used to allow the user to set a fixed control parameter, such as a setpoint. Read Only AVs are typically used to display the status of a control operation.

BI = Binary Input. A physical input to the control module.

BO = Binary Output. A physical output from the control module.

BV = Binary Value. An intermediate (software) point that may be editable or read-only. Editable BVs are typically used to allow the user to set a fixed control parameter, such as a setpoint. Read Only BVs are typically used to display the status of a control operation.

Loop = A control loop. Most commonly a PID control loop. Typically a control loop will include a setpoint, an input which is compared to the setpoint, and an output which controls some action based upon the difference between the input and the setpoint. A PID control loop will also include gains for the proportional, integral, and derivative response as well as an interval which controls how frequently the control loop updates its output. These gains may be adjustable by the end user for control loop "tuning," but in self-tuning control loops or loops which have been optimized for a specific application the gains may not be adjustable.

Sched = Schedule. The control algorithm for this equipment shall include a user editable schedule.

Trend. The control system shall be configured to collect and display a trend log of this object. The trending interval shall be no less than one sample every 5 minutes. (Change of Value trending, where a sample is taken every time the value changes by more than a user-defined minimum, is an acceptable alternative.)

Alarm. The control system shall be configured to generate an alarm when this object exceeds user definable limits, as described in the Sequence of Controls.

Note:If the specifications require use of the BACnet protocol, all of the above shall be provided as BACnet objects.

KW Demand Limiting: *

An energy management strategy that reduces energy consumption when a system's electric power meter exceeds an operator-defined threshold.

When power consumption exceeds defined levels, the system automatically adjust setpoints, de-energizes low priority equipment, and takes other pre-programmed actions to avoid peak demand charges. As the demand drops, the system restores loads in a predetermined manner.

Occupant Override Switch, or Timed Local Override:

A control option that allows building occupants to override the programmed HVAC schedule for a limited period of time.

When the override time expires, the zone returns to its unoccupied state.

Occupant Setpoint Adjustment:

A control option that allows building occupants to adjust - within limits set by the HVAC control system - the heating and cooling setpoints of selected zones. Typically the user interface for this function is built into the zone sensor.

Optimal Start-Up: *

A control strategy that automatically starts an HVAC system at the latest possible time yet ensures comfort conditions by the time the building becomes occupied.

In a typical implementation, a controller measures the temperature of the zone and the outside air. Then, using design heating or cooling capacity at the design outside air temperature, the system computes how long a unit must run at maximum capacity to bring the zone temperature to its occupied setpoint.

The optimal start algorithm often includes a self-learning feature to adjust for variations from design capacity.

A distributed system must use Run on Request with Optimal Start. (See below.)

Reguested, or Run on Reguest: *

A control strategy that optimizes the runtime of a source piece of equipment that supplies one or more receiving units - such as an air handler unit supplying zone terminal units with heating, cooling, ventilation, or similar service. Source equipment runs only when needed, not on a fixed schedule.

The source equipment runs when one or more receiving units request its services. An operator determines how many requests are required to start the source equipment.

For example, if all the zones in a building are unoccupied and the zone terminal units do not need heating or cooling, the AHU will shut down. However, if a zone becomes occupied or needs cooling, the terminal unit will send a run request to the AHU to initiate the start-up sequence. If this AHU depends on a central chiller, it can send a run request to the chiller.

The run on request algorithm also allows an operator to schedule occupancy for individual zones based on the needs of the occupants without having to adjust the schedules of related AHUs and chillers

Trim and Respond, or Setpoint Optimization: *

A control strategy that optimizes the setpoint of a source piece of equipment that supplies one or more receiving units - such as an air handler unit supplying zone terminal units with heating, cooling, ventilation, or similar service.

The source unit communicates with receiving units to determine heating, cooling, and other requirements, and then adjusts its setpoint.

For example, if all zones are comfortable and do not request cooling, the AHU will gradually increase (trim) its supply air setpoint. When a zone requests cooling, the AHU responds by dropping its setpoint. The more zones that request cooling, the more it drops the setpoint. The AHU repeats this process throughout the day to keep zones cool, but with a supply air setpoint that is no cooler than necessary.

Contracting Terms:

Furnished or Provided:

The act of supplying a device or piece of equipment as required meeting the scope of work specified and making that device or equipment operational. All costs required to furnish the specified device or equipment and make it operational are borne by the division specified to be

responsible for providing the device or equipment.

Install or Installed:

The physical act of mounting, piping or wiring a device or piece of equipment in accordance with the manufacturer's instructions and the scope of work as specified. All costs required to complete the installation are borne by the division specified to include labor and any ancillary materials.

Interface:

The physical device required to provide integration capabilities from an equipment vendor's product to the control system. The equipment vendor most normally furnishes the interface device. An example of an interface is the chilled water temperature reset interface card provided by the chiller manufacturer in order to allow the control system to integrate the chilled water temperature reset function into the control system.

Integrate:

The physical connections from a control system to all specified equipment through an interface as required to allow the specified control and monitoring functions of the equipment to be performed via the control system.

APPENDIX B: Abbreviations

The following abbreviations may be used in graphics, schematics, point names, and other UI applications where space is at a premium.

AC - Air Conditioning

ACU - Air Conditioning Unit

AHU - Air Handling Unit

AI - Analog Input

AO - Analog Output

ATC - Automatic Temperature Control

AUTO - Automatic

AUX - Auxiliary

AV - Analog Value

BAS - Building Automation System

BI -Binary Input

BO -Binary Output

BV - Binary Value

C -Common

CFM - Cubic Feet per Minute

CHW - Chilled Water

CHWP - Chilled Water Pump

CHWR - Chilled Water Return

CHWS - Chilled Water Supply

COND - Condenser

CV - Constant Volume

CW - Condenser Water

CWP - Condenser Water Pump

CWR - Condenser Water Return

CWS - Condenser Water Supply

DA - Discharge Air

DDC - Direct Digital Control

DI - Digital Input

DO - Digital Output

EA - Exhaust Air

EF - Exhaust Fan

EVAP - Evaporators

FAS - Fire Alarm System

FCU - Fan Coil Unit

HOA - Hand / Off / Auto

HP - Heat Pump

HRU - Heat Recovery Unit

HVAC - Heating, Ventilating, and Air Conditioning

HW - Hot Water

HWP - Hot Water Pump

HWR - Hot Water Return

HWS - Hot Water Supply

HX - Heat Exchanger

IU - Induction Unit

LAN - Local Area Network

MAX - Maximum

MIN - Minimum

MISC - Miscellaneous

NC - Normally Closed

NO - Normally Open

OA - Outdoor Air

PID - Proportional Integral Derivative

PIU - Powered Induction Unit

POT - Portable Operators Terminal

RA - Return Air

RF - Return Fan

RH - Relative Humidity

RTU - Roof-top Unit

SA - Supply Air

SF - Supply Fan

SP - Static Pressure

TEMP - Temperature

UH - Unit Heater

UV - Unit Ventilator

VAV - Variable Air Volume

VFD - Variable Frequency Drive

VRF - Variable Refrigerant Flow

VRV - Variable Refrigerant Volume

VVTU - Variable Volume Terminal Unit

W/ - with

W/O - without

WSHP - Water Source Heat Pump

END OF SECTION

SECTION 231710 VARIABLE FREQUENCY DRIVES

PART 1 – GENERAL

1.1 GENERAL REQUIREMENTS

A. Drawings and general provisions of Contact, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this section.

1.2 PRINCIPAL WORK IN THIS SECTION

- A. Variable frequency drives.
- B. Materials, equipment, fabrication, installation and tests, in conformity with applicable codes and authorities having jurisdiction, for variable frequency drives (VFD's).

1.3 QUALITY ASSURANCE

- A. Refer to General Provisions.
- B. Manufacturer: Company specializing in manufacture of variable frequency drives and their accessories, with minimum ten years documented product development, testing, and manufacturing experience in the horsepower range required.
- C. VFD's shall have a minimum MTBF (mean time between failure) rating of 28 years.

1.4 SUBMITTALS

- A. Submit product data, drawings and diagrams for the following items per the provisions of Division 1 and this Division's General provisions:
 - 1. Product data: Manufacturer's catalog cuts, ratings and installation instructions.
 - 2. Drawings: Scale drawings of assembly.
 - 3. Diagrams: wiring diagrams including all external connections.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Variable Frequency Drives:
 - 1. Square D.
 - 2. ABB
 - Danfoss Graham.

2.2 VARIABLE FREQUENCY DRIVES

A. General:

- 1. Motors shall be provided with UL Listed variable frequency drive (VFD) control systems.
- 2. Motors shall be provided with a microprocessor based, pulse width modulated (PWM) variable frequency drive (VFD) control systems as specified or noted.
- 3. The adjustable frequency AC motor drive shall be designed to convert the 60 hertz input power to adjustable frequency output power. The output frequency and voltage of the drive shall be adjustable such that a constant volts/Hz ratio is determined from the design parameters of the driven motor.
- 4. Drive shall be capable of operating any standard squirrel cage induction motor with load rating within the capacity of the drive. At any time in the future, it shall be possible to substitute a new or rewound motor in the field without requiring modification of the drive.
- 5. For retrofit projects, Contractor shall be familiar with existing motor conditions. Existing motor must have a 1.15 service factor and Class B insulation. VFD shall be sized for current voltage and HP of existing motor. Any motors not meeting these minimum requirements shall be replaced and provided by the Contractor.
- 6. For maintenance purposes, drive shall be capable of starting, stopping and running with stable operation with the motor completely disconnected (no load).
- 7. Input AC line reactor shall be provided by manufacturers of VFD.

B. Features:

- 1. Drive enclosure shall be a NEMA Type 1 or equivalent, wall or floor mounted, metal cabinet with hinged front access door(s), filtered ventilation system (if required), and controls that are mounted, wired and tested.
- 2. Fused, interlocked disconnect switch or input line circuit breaker, externally operated, interlocked with enclosure door. Short circuit interrupting rating of 200,000 amps.
- 3. Internal 115 VAC control power circuit with transformer and primary and secondary protective fuses.
- 4. One normally open and one normally closed contacts from run relay, wired to terminal for customer use. Contactors to enable control of drive from a central control system for start/stop and load shed operation through remote speed reset.
- 5. Controlled acceleration and deceleration, separately adjustable, shall be provided from 0.5 to 200 seconds with torque limit override acceleration

- protection and regeneration protection during deceleration.
- 6. Drive shall automatically adjust the volts/Hz ratio to the motor in proportion to its load without changing speed in order to conserve the maximum amount of energy.
- 7. Separately adjustable maximum and minimum frequency limits shall be provided.
- 8. Low frequency/low voltage start with linearly adjustable ramp up to pre-selected speed.
- 9. All components shall be accessible from the cabinet door for service. Drive must be designed for side-by-side, back-to-back and against-the-wall installation.
- 10. Digitally displayed AC ammeter and percent load meter, located on door.
- 11. Digitally displayed speed control and speed indicator, located on door.
- 12. Digitally displayed voltmeter, located on door.
- 13. Hand/off/auto switch with start/stop pushbuttons or switches.
 - a. In the "hand" position, the speed is controlled by the door mounted speed control and the start/stop commands are controlled by the door mounted start/stop pushbuttons or switches.
 - b. In the "off" position, the drive cannot be started.
 - c. In the "auto" position, the speed is controlled by a remote electronic signal and the drive can receive only a remote start command (momentary contact closure). The stop command in the auto position can be either remote or from the door mounted stop pushbutton or switch (to ensure maximum safety).
 - d. To facilitate equipment setup, the drive shall not undergo complete shutdown when moving the selector switch from the hand position to the auto position.
- 14. Drive fault alarm contact for remote indication.
- 15. Automatic reset of drive to receive start command after any normal shutdown, including power outages.
- 16. Remote electrical input signal for speed control(to be coordinated with control Contractor).
- 17. Critical speed rejection circuit.

- 18. Drive shall be constructed with integral protection against all normal transients and surges in the incoming power line, any grounding or disconnecting of the output power line, and any interruption or runaway of the incoming speed reference signal. Protection is defined as a normal shutdown or return to original speed with no component damage.
- 19. Drive shall protect itself against all phase-to-phase and phase-to-ground faults.
- 20. Drive shall protect itself against any removal of load.
- 21. Drive shall employ adjustable torque limit control to override the speed command and decrease the frequency while maintaining the correct volts/Hz ratio whenever the load level surpasses the drive design level.
- 22. Drive shall protect itself against single-phasing and power outages and shall be insensitive to input phase rotation.
- 23. Drive shall start into a spinning motor or shut down with no component damage.
- 24. Drive shall ride through any input power dip of three cycles or less.
- 25. Drive shall go through an orderly shutdown when the incoming voltage low limit is surpassed.
- 26. Instantaneous overcurrent trip (IOT) shall continuously monitor peak currents. It shall provide instantaneous shutdown without component failure when high limit setting is surpassed.
- 27. Torque limit shall be settable from 50 to 100 percent of full drive rating on variable torque loads. When torque limit engages, the output frequency is steadily reduced until the load reduces to the design capacity. At that point, the speed will stabilize. If the load reduces further, the drive shall re-accelerate to the preset speed.
- 28. Manual bypass shall be provided when indicated by the schedule. VFD and bypass components shall be mounted inside a common NEMA 1 enclosure, fully pre-wired and ready for installation as a single UL listed device. Bypass shall include the following:
 - a. Input, output, and bypass contactors, to disconnect power to the VFD, when the motor is running in the bypass mode.
 - b. 115 V.A.C. control transformer, with fused primary.
 - c. Thermal overload relay, to protect the motor while operating in the bypass mode.
 - d. Circuit breaker/disconnect switch, with a "through-the-door" handle mechanism
 - e. Control and safety circuit terminal strip.

- f. "Drive-Off-Bypass" selector switch.
- g. Pilot lights for "Power On" and "Fault".
- h. "Normal/Test" selector switch, to allow testing and adjustment of the VFD while the motor is running in the bypass mode.
- 29. UL listed, nonlinear isolation transformer to prevent noise and harmonic feedback to electrical system. Shall be mounted in NEMA 1 enclosure and be of dry type construction with Class H insulation. Transformer shall be provided by variable frequency drive manufacturer to match performance of variable frequency drive(s).
- 30. The VFD must meet the requirements for Radio Frequency Interference (RFI) above 7 MHz as specified by FCC regulations, part 15, subpart J, Class A devices.
- 31. A digital diagnostic system which monitors its own control functions and displays faults and operating conditions.
- 32. Operating conditions:
 - a. Line voltage variations: +10 percent, -5 percent.
 - b. Line frequency variations: ± 2 hertz.
 - c. Overload capability of up to 130 percent of full drive rating for variable torque loads.
 - d. Ambient temperature: 0°C to 40°C.
 - e. Maximum altitude limit: 3,300 feet.
 - f. Maximum humidity: 95 percent (non-condensing).
 - g. Efficiency in excess of 95 percent at full load/full speed and in excess of 80 percent at half speed on a variable torque load (cubic load).
- Serial communication.
- 34. VFD shall be capable of PID (Proportional, Integral, Derivative) logic, to provide closed-loop setpoint control capability, from a remote reference. In addition, an energy saving sleep function should be used in conjunction with the PID control. The SLEEP function reduces the unnecessary operation of equipment. When the SLEEP function senses a minimal deviation of a sensor (pressure, temperature), the system reacts by removing the run signal from the equipment. Upon receiving an ample sensor signal deviation, the equipment returns the run signal and resumes normal operation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install in accordance with manufacturer's recommendations.
- B. Coordinate drive equipment with motors supplied under Motors and Motor Controllers.
- C. Factory representative shall inspect final installation of all drives and connected wiring and make all final adjustments to meet specified performance.

3.2 TESTS

- A. Manufacturer shall conduct factory tests to assure conformance to specification requirements.
- B. All power components shall be run-tested under specified temperature and load conditions.
- C. Complete records of test procedure and results shall be made available at no cost to Owner's representative.

3.3 TRAINING

A. Factory representative shall provide on-site training of operating personnel after the system is fully operational.

3.4 WARRANTY

A. Three-year warranty from date of shipment.

END OF SECTION

SECTION 232113 HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Chilled-water piping.
 - 2. Air-vent piping.
 - 3. Safety-valve-inlet and -outlet piping.
- B. Related Sections include the following:
 - 1. Division 23 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.3 DEFINITIONS

A. PTFE: Polytetrafluoroethylene.

1.4 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Pipe materials and fittings.
 - 2. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 3. Air control devices.
 - 4. Chemical treatment.
 - 5. Hydronic specialties.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

- B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. T-DRILL Industries Inc.
- D. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Unions: ASME B16.39; Class 150 as indicated in Part 3 "Piping Applications" Article.
- D. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- E. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

- 1. Material Group: 1.1.
- 2. End Connections: Butt welding.
- 3. Facings: Raised face.
- G. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 PLASTIC PIPE AND FITTINGS

A. HDPE Plastic Pipe: ASTM D-3350, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.

2.4 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solder-ioint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; AquaSpec Commercial Products Division.
- 2. Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Factory-fabricated companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric-Flange Kits:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
- 2. Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
- 3. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Calpico, Inc.
 - b. Lochinvar Corporation.

2. Galvanized-steel coupling with inert and noncorrosive thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Perfection Corporation; a subsidiary of American Meter Company.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Victaulic Company of America.
- 2. Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.6 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."
- B. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Taco.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plua: Resin.
 - 5. Seat: PTFE.
 - End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig.
 - 10. Maximum Operating Temperature: 250 deg F.

2.7 AIR CONTROL DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Wessels
 - 2. Amtrol. Inc.
 - 3. Armstrong Pumps, Inc.
 - 4. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - 5. Taco.

B. Manual Air Vents:

- 1. Body: Bronze.
- 2. Internal Parts: Nonferrous.
- 3. Operator: Screwdriver or thumbscrew.
- 4. Inlet Connection: NPS 1/2.
- 5. Discharge Connection: NPS 1/8.
- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 225 deg F.

C. Automatic Air Vents:

- 1. Body: Bronze or cast iron.
- 2. Internal Parts: Nonferrous.
- 3. Operator: Noncorrosive metal float.
- 4. Inlet Connection: NPS 1/2.
- 5. Discharge Connection: NPS 1/4.
- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 240 deg F.

D. Diaphragm-Type Expansion Tanks:

- 1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Factory test with taps fabricated and supports installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- 2. Diaphragm: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
- 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.

2.8 CHEMICAL TREATMENT

- A. Bypass Chemical Feeder: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

2.9 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: [40] [60]-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.

B. Stainless-Steel Bellow, Flexible Connectors:

- 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective iacket.
- 2. End Connections: Threaded or flanged to match equipment connected.
- 3. Performance: Capable of 3/4-inch misalignment.
- 4. CWP Rating: 150 psig.
- 5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered or brazed joints.
 - 2. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- B. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- C. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- D. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints for air conditioning condensate or Schedule 40 PVC plastic pipe and fittings and solvent-welded joints for boiler flue condensate.

E. Air-Vent Piping:

- 1. Inlet: Same as service where installed.
- 2. Outlet: Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- F. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- C. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- D. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
- E. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.

- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- T. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Seismic restraints are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

- C. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS ³/₄ to 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/2 to 6: Maximum span, 10 feet; minimum rod size, 1/2 inch.
- E. Install hangers for drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS ³/₄ to 1-1/2: Maximum span, 6 feet; minimum rod size, 3/8 inch.
 - 2. NPS 2 and greater: Maximum span, 10 feet; minimum rod size, 1/2 inch.
- F. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using leadfree solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

3.6 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.
- C. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- D. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches above the floor. Install feeder in minimum NPS 3/4 bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 pipe from chemical feeder drain, to nearest equipment drain and include a full-size, full-port, ball valve.
- E. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system Project requirements.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.8 CHEMICAL TREATMENT

- A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics:
 - 1. pH: 9.0 to 10.5.
 - 2. "P" Alkalinity: 100 to 500 ppm.
 - 3. Boron: 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maximum 100 ppm.
 - 5. Corrosion Inhibitor:
 - a. Sodium Nitrate: 1000 to 1500 ppm.
 - b. Molybdate: 200 to 300 ppm.
 - c. Chromate: 200 to 300 ppm.
 - d. Sodium Nitrate Plus Molybdate: 100 to 200 ppm each.
 - e. Chromate Plus Molybdate: 50 to 100 ppm each.
 - 6. Soluble Copper: Maximum 0.20 ppm.
 - 7. Tolyiriazole Copper and Yellow Metal Corrosion Inhibitor: Minimum 10 ppm.
 - 8. Total Suspended Solids: Maximum 10 ppm.
 - 9. Ammonia: Maximum 20 ppm.
 - 10. Free Caustic Alkalinity: Maximum 20 ppm.
 - 11. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maximum 1000 organisms/ml.
 - b. Total Anaerobic Plate Count: Maximum 100 organisms/ml.
 - c. Nitrate Reducers: 100 organisms/ml.
 - d. Sulfate Reducers: Maximum 0 organisms/ml.
 - e. Iron Bacteria: Maximum 0 organisms/ml.
- B. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.
- C. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.

- 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
- 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

- 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used
- 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
- 3. Isolate expansion tanks and determine that hydronic system is full of water.
- 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
- 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- 6. Prepare written report of testing.

C. Perform the following before operating the system:

- 1. Open manual valves fully.
- 2. Inspect pumps for proper rotation.
- 3. Set makeup pressure-reducing valves for required system pressure.
- 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
- 5. Set temperature controls so all coils are calling for full flow.
- 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
- 7. Verify lubrication of motors and bearings.

END OF SECTION

SECTION 232113.13 UNDERGROUND HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Plastic pipe and fittings.
 - 2. Transition fittings.
 - 3. Cased piping system.

1.3 PERFORMANCE REQUIREMENTS

- A. Provide components and installation capable of producing hydronic piping systems with the following minimum working-pressure ratings:
 - 1. Chilled-Water Piping: 100 psig at 200 deg F.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Cased piping.
- B. Shop Drawings: For underground hydronic piping. Signed and sealed by a professional engineer.
 - 1. Calculate requirements for expansion compensation for underground piping.
 - 2. Show expansion compensators, offsets, and loops with appropriate materials to allow piping movement in the required locations. Show anchors and guides that restrain piping movement with calculated loads, and show concrete thrust block dimensions.
 - 3. Show pipe sizes, locations, and elevations. Show piping in trench, conduit, and cased pipe with details showing clearances between piping, and show insulation thickness.
- C. Profile Drawings: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet and at vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing hydronic piping.
- D. Qualification Data: For qualified Installer.

- E. Welding certificates.
- F. Material Test Reports: For cased piping.
- G. Source quality-control reports.
- H. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31.9, "Building Services Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

PART 2 - PRODUCTS

2.1 PLASTIC PIPE AND FITTINGS

- A. HDPE Plastic:
 - 1. Pipe: ASTM D-3350, plain ends as indicated in "Piping Application" Article.
 - 2. Pipe Fittings: Fittings shall be heat fusion butt-welded to adjacent pipe sections.

2.2 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings: CPVC one-piece fitting with one threaded brass or copper insert and one Schedule 80 solvent-cemented-joint end.

2.3 CASED PIPING SYSTEM

- A. Description: Factory-fabricated piping with carrier pipe, insulation, and casing.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Insul-Tek Piping Systems, Inc.

- b. Perma-Pipe, Inc.
- c. Rovanco Piping Systems, Inc.
- d. Thermacor Process, L.P.
- e. Thermal Pipe Systems.
- f. Urecon Ltd.
- B. Carrier Pipe: Plastic pipe and fittings.
- C. Carrier Pipe Insulation:
 - 1. Polyurethane Foam Pipe Insulation: Rigid, cellular, high-pressure injected between carrier pipe and jacket.
 - a. Comply with ASTM C 591; thermal conductivity (k-value) shall not exceed 0.16 Btu x in./h x sq. ft. x deg F at 75 deg F after 180 days of aging.
- D. Casing: HDPE.
- E. Casing accessories include the following:
 - 1. Joint Kit: Half-shell, pourable or split insulation, casing sleeve, and shrink-wrap sleeve.
 - 2. Expansion Blanket: Elastomeric foam, formed to fit over piping.
 - 3. End Seals: Shrink wrap the casing material to seal watertight around casing and carrier pipe.

PART 3 - EXECUTION

3.1 EARTHWORK

A. See Division 31 Sections for excavating, trenching, and backfilling.

3.2 PIPING APPLICATION

- A. Chilled-Water Piping:
 - 1. Shall be the following:
 - a. HDPE plastic pipe and fittings.
 - 2. Cased piping with polyurethane carrier-pipe insulation.
 - a. Piping Insulation Thickness: 1 inch.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size

- pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Remove standing water in the bottom of trench.
- C. Do not backfill piping trench until field quality-control testing has been completed and results approved.
- D. Install piping at uniform grade of 0.2 percent. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points and elsewhere as required for system drainage. Install manual air vents at high points.
- E. Install components with pressure rating equal to or greater than system operating pressure.
- F. Install piping free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. See Division 23 Section "Common Work Results for HVAC" for sleeves and mechanical sleeve seals through exterior building walls.
- I. Secure anchors with concrete thrust blocks. Concrete is specified in Division 03 Section "Cast-in-Place Concrete."
- J. See Division 26 Section "Cathodic Protection" for cathodic devices and connections to piping and conduit systems.

3.4 JOINT CONSTRUCTION

- A. See Division 33 Section "Common Work Results for Utilities" for basic piping joint construction.
- B. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- C. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- D. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- E. Straight run joints consisting of pipe and jacket are butt fusion welded and field insulated using urethane foam to the thickness specified and jacketed with a heat shrinkable sleeve over the HDPE sleeve mold. Joints can be made beside the trench or inside the trench.
- F. Carrier pipe fittings of the same material and pressure rating shall be heat fusion butt-welded to adjacent pipe sections. Fittings that are butt fusion welded are to be field installed or, at engineer's option, factory insulated. If fittings are factory manufactured, fittings are preinsulated using factory PE fitting covers welded to the jackets..

3.5 IDENTIFICATION

A. Install continuous plastic underground warning tapes during back filling of trenches for underground hydronic piping. Locate tapes 6 to 8 inches below finished grade, directly over piping. See Division 31 Sections for warning-tape materials and devices and their installation.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

- 1. Prepare hydronic piping for testing according to ASME B31.9 and as follows:
 - a. Leave joints, including welds, uninsulated and exposed for examination during test.
 - b. Fill system with water. Where there is risk of freezing, air or a safe, compatible liquid may be used.
 - c. Use vents installed at high points to release trapped air while filling system.
- 2. Test hydronic piping as follows:
 - a. Subject hydronic piping to hydrostatic test pressure that is not less than 1.5 times the design pressure.
 - b. After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.
- Test conduit as follows:
 - Seal vents and drains and subject conduit to 15 psig for four hours with no loss of pressure. Repair leaks and retest as required.
- D. Prepare test and inspection reports.

END OF SECTION

SECTION 232123 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Close-coupled, in-line centrifugal pumps.

1.3 DEFINITIONS

- A. Buna-N: Nitrile rubber.
- B. EPT: Ethylene propylene terpolymer.

1.4 SUBMITTALS

- A. Product Data: Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
- B. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of hydronic pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Manufacturer's Preparation for Shipping: Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with wooden flange covers or with screwed-in plugs.
- B. Store pumps in dry location.
- C. Retain protective covers for flanges and protective coatings during storage.
- D. Protect bearings and couplings against damage from sand, grit, and other foreign matter.
- E. Comply with pump manufacturer's written rigging instructions.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS

- A. Available Manufacturers:
 - 1. Bell & Gossett: Div. of ITT Industries.
 - 2. Armstrong Pumps Inc.
 - 3. Grundfos Pumps Corporation.
 - 4. Taco, Inc.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically. Rate pump for 175-psig minimum working pressure and a continuous water temperature of 250 deg F.

C. Pump Construction:

- 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, and threaded companion-flange connections.
- 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
- 3. Pump Shaft: Stainless steel.
- 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPR bellows and gasket. Include water slinger on shaft between motor and seal.
- 5. Pump Bearings: Permanently lubricated ball bearings.
- D. Motor: Single speed, with permanently lubricated ball bearings, unless otherwise indicated; and rigidly mounted to pump casing. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
- E. Capacities and Characteristics: Refer to Equipment Schedules on plans.

2.3 PUMP SPECIALTY FITTINGS

A. Suction Diffuser: Angle pattern, 175-psig pressure rating, cast-iron body and end cap, pump-inlet fitting; with bronze startup and stainless-steel permanent strainers; stainless-steel straightening vanes; drain plug; and factory-fabricated support.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of work.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.
- C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONCRETE BASES

- A. Install concrete bases of dimensions indicated for pumps and controllers. Refer to Division 23 Section "Common Work Results for HVAC."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.

- 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- B. Cast-in-place concrete materials and placement requirements are specified in Division 03.

3.3 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.
- C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- D. Set base-mounted pumps on concrete foundation. Disconnect coupling before setting. Do not reconnect couplings until alignment procedure is complete.
 - 1. Support pump baseplate on rectangular metal blocks and shims, or on metal wedges with small taper, at points near foundation bolts to provide a gap of 3/4 to 1-1/2 inches between pump base and foundation for grouting.
 - 2. Adjust metal supports or wedges until pump and driver shafts are level. Check coupling faces and suction and discharge flanges of pump to verify that they are level and plumb.

3.4 ALIGNMENT

- A. Align pump and motor shafts and piping connections after setting on foundation, grout has been set and foundation bolts have been tightened, and piping connections have been made.
- B. Comply with pump and coupling manufacturers' written instructions.
- C. Adjust pump and motor shafts for angular and offset alignment by methods specified in HI 1.1-1.5, "Centrifugal Pumps for Nomenclature, Definitions, Application and Operation."
- D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.5 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.
- D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- E. Install check valve and throttling valve on discharge side of pumps.
- F. Install Y-type strainer or suction diffuser and shutoff valve on suction side of pumps.
- G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.
- H. Install pressure gages on pump suction and discharge, at integral pressure-gage tapping, or install single gage with multiple input selector valve.
- I. Install electrical connections for power, controls, and devices.
- J. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- K. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 6. Start motor.
 - 7. Open discharge valve slowly.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

SECTION 236423 SCROLL WATER CHILLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Packaged, air-cooled, electric-motor-driven, scroll water chillers.

1.3 DEFINITIONS

- A. COP: Coefficient of performance. The ratio of the rate of heat removal to the rate of energy input using consistent units for any given set of rating conditions.
- B. EER: Energy-efficiency ratio. The ratio of the cooling capacity given in terms of Btu/h to the total power input given in terms of watts at any given set of rating conditions.
- C. IPLV: Integrated part-load value. A single number part-load efficiency figure of merit calculated per the method defined by ARI 550/590 and referenced to ARI standard rating conditions.
- D. kW/Ton: The ratio of total power input of the chiller in kilowatts to the net refrigerating capacity in tons at any given set of rating conditions.
- E. NPLV: Nonstandard part-load value. A single number part-load efficiency figure of merit calculated per the method defined by ARI 550/590 and intended for operating conditions other than the ARI standard rating conditions.

1.4 SUBMITTALS

- A. Product Data: Include refrigerant, rated capacities, operating characteristics, furnished specialties, and accessories.
 - 1. Performance at ARI standard conditions and at conditions indicated.
 - 2. Performance at ARI standard unloading conditions.
 - 3. Minimum evaporator flow rate.
 - 4. Refrigerant capacity of water chiller.
 - 5. Oil capacity of water chiller.
 - 6. Fluid capacity of evaporator.

- 7. Characteristics of safety relief valves.
- 8. Minimum entering condenser-air temperature
- 9. Performance at varying capacity with constant design entering condenser-air temperature. Repeat performance at varying capacity for different entering condenser-air temperatures from design to minimum in 10 deg F increments.
- B. Shop Drawings: Complete set of manufacturer's prints of water chiller assemblies, control panels, sections and elevations, and unit isolation. Include the following:
 - 1. Assembled unit dimensions.
 - 2. Weight and load distribution.
 - 3. Required clearances for maintenance and operation.
 - 4. Size and location of piping and wiring connections.
 - 5. Wiring Diagrams: For power, signal, and control wiring.
- C. Startup service reports.
- D. Operation and Maintenance Data: For each water chiller to include in emergency, operation, and maintenance manuals.
- E. Warranty: Sample of special warranty.

1.5 QUALITY ASSURANCE

- A. ARI Certification: Certify chiller according to ARI 590 certification program.
- B. ARI Rating: Rate water chiller performance according to requirements in ARI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle."
- C. ASHRAE Compliance: ASHRAE 15 for safety code for mechanical refrigeration.
- D. ASHRAE/IESNA 90.1-2004 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. ASME Compliance: Fabricate and stamp water chiller heat exchangers to comply with ASME Boiler and Pressure Vessel Code.
- F. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Ship water chillers from the factory fully charged with refrigerant and filled with oil.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of water chillers that fail in materials or workmanship within specified period.
 - 1. Compressor Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PACKAGED AIR-COOLED WATER CHILLERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Trane.
- B. Description: Factory-assembled and run-tested water chiller complete with base and frame, condenser casing, compressors, compressor motors and motor controllers, evaporator, condenser coils, condenser fans and motors, electrical power, controls, and accessories.

C. Cabinet:

- 1. Base: Galvanized-steel base extending the perimeter of water chiller. Secure frame, compressors, and evaporator to base to provide a single-piece unit.
- 2. Frame: Rigid galvanized-steel frame secured to base and designed to support cabinet, condenser, control panel, and other chiller components not directly supported from base.
- 3. Casing: Galvanized steel.
- 4. Finish: Coat base, frame, and casing with a corrosion-resistant coating capable of withstanding a 500-hour salt-spray test according to ASTM B 117.
- 5. Sound-reduction package consisting of the following:
 - a. Acoustic enclosure around compressors.
 - b. Reduced-speed fans with acoustic treatment.
 - c. Designed to reduce sound level without affecting performance.

D. Compressors:

- 1. Description: Positive-displacement direct drive with hermetically sealed casing.
- 2. Each compressor provided with suction and discharge service valves, crankcase oil heater, and suction strainer.
- 3. Operating Speed: Nominal 3600 rpm for 60-Hz applications.
- 4. Capacity Control: On-off compressor cycling.
- 5. Oil Lubrication System: Automatic pump with strainer, sight glass, filling connection, filter with magnetic plug, and initial oil charge.
- 6. Vibration Isolation: Mount individual compressors on vibration isolators.

E. Compressor Motors:

- 1. Hermetically sealed and cooled by refrigerant suction gas.
- 2. High-torque, two-pole induction type with inherent thermal-overload protection on each phase.

F. Compressor Motor Controllers:

1. Across the Line: NEMA ICS 2, Class A, full voltage, nonreversing.

G. Refrigeration:

- 1. Refrigerant: R-410a. Classified as Safety Group A1 according to ASHRAE 34.
- 2. Refrigerant Compatibility: Parts exposed to refrigerants shall be fully compatible with refrigerants, and pressure components shall be rated for refrigerant pressures.
- 3. Refrigerant Circuit: Each circuit shall include a thermal-expansion valve, refrigerant charging connections, a hot-gas muffler, compressor suction and discharge shutoff valves, a liquid-line shutoff valve, a replaceable-core filter-dryer, a sight glass with moisture indicator, a liquid-line solenoid valve, and an insulated suction line.
- 4. Refrigerant Isolation: Factory install positive shutoff isolation valves in the compressor discharge line and the refrigerant liquid-line to allow the isolation and storage of the refrigerant charge in the chiller condenser.

H. Evaporator:

1. Brazed Plate:

- a. Direct-expansion, single-pass, brazed-plate design.
- b. Type 316 stainless-steel construction.
- Code Compliance: Tested and stamped according to ASME Boiler and Pressure Vessel Code.
- d. Fluid Nozzles: Terminate with mechanical-coupling end connections for connection to field piping.
- 2. Heater: Factory-installed, field-wired electric heater with integral controls designed to protect the evaporator to minus 20 deg F.

I. Air-Cooled Condenser:

- 1. Plate-fin coil with integral subcooling on each circuit, rated at 650 psig.
 - a. Aluminum microchannel condenser coils.
- 2. Fans: Direct-drive propeller type with statically and dynamically balanced fan blades, arranged for vertical air discharge.
- 3. Fan Motors: Totally enclosed nonventilating (TENV) or totally enclosed air over (TEAO) enclosure, with permanently lubricated bearings, and having built-in overcurrent- and thermal-overload protection.
- 4. Fan Guards: Steel safety guards with corrosion-resistant coating.

J. Electrical Power:

- 1. Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to water chiller
- 2. House in a unit-mounted, NEMA 250, Type 3R enclosure with hinged access door with lock and key or padlock and key.
- 3. Wiring shall be numbered and color-coded to match wiring diagram.
- 4. Install factory wiring outside of an enclosure in a raceway.
- 5. Field power interface shall be to wire lugs.
- 6. Provide branch power circuit to each motor and to controls with one of the following disconnecting means:
 - a. NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 60947-4-1.
 - b. NEMA KS 1, heavy-duty, nonfusible switch.
 - c. NEMA AB 1, motor-circuit protector (circuit breaker) with field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
- 7. Provide each motor with overcurrent protection.
- 8. Overload relay sized according to UL 1995, or an integral component of water chiller control microprocessor.
- 9. Phase-Failure and Undervoltage: Solid-state sensing with adjustable settings.
- 10. Transformer: Unit-mounted transformer with primary and secondary fuses and sized with enough capacity to operate electrical load plus spare capacity.
 - a. Power unit-mounted controls where indicated.
 - b. Power unit-mounted, ground fault interrupt (GFI) duplex receptacle.
- 11. Control Relays: Auxiliary and adjustable time-delay relays.
- 12. Indicate the following for water chiller electrical power supply:
 - a. Current, phase to phase, for all three phases.
 - b. Voltage, phase to phase and phase to neutral for all three phases.
 - c. Three-phase real power (kilowatts).
 - d. Three-phase reactive power (kilovolt amperes reactive).
 - e. Power factor.
 - f. Running log of total power versus time (kilowatt hours).
 - g. Fault log, with time and date of each.

K. Controls:

- 1. Stand-alone, microprocessor based.
- 2. Enclosure: Share enclosure with electrical power devices or provide a separate enclosure of matching construction.
- 3. Operator Interface: Keypad or pressure-sensitive touch screen. Multiple-character, backlit, liquid-crystal display or light-emitting diodes. Display the following:
 - a. Date and time.

- b. Operating or alarm status.
- c. Operating hours.
- d. Outside-air temperature if required for chilled-water reset.
- e. Temperature and pressure of operating set points.
- f. Entering and leaving temperatures of chilled water.
- g. Refrigerant pressures in evaporator and condenser.
- h. Saturation temperature in evaporator and condenser.
- i. No cooling load condition.
- j. Elapsed time meter (compressor run status).
- k. Pump status.
- I. Antirecycling timer status.
- m. Percent of maximum motor amperage.
- n. Current-limit set point.
- o. Number of compressor starts.

4. Control Functions:

- a. Manual or automatic startup and shutdown time schedule.
- b. Entering and leaving chilled-water temperatures, control set points, and motor load limit. Chilled-water leaving temperature shall be reset based on return-water temperature.
- c. Current limit and demand limit.
- d. External water chiller emergency stop.
- e. Antirecycling timer.
- f. Automatic lead-lag switching.
- 5. Manual-Reset Safety Controls: The following conditions shall shut down water chiller and require manual reset:
 - a. Low evaporator pressure or high condenser pressure.
 - b. Low chilled-water temperature.
 - c. Refrigerant high pressure.
 - d. High or low oil pressure.
 - e. High oil temperature.
 - f. Loss of chilled-water flow.
 - c. Control device failure.
- 6. Building Automation System Interface: Factory-installed hardware and software to enable building automation system to monitor, control, and display water chiller status and alarms.
 - a. Hardwired Points:
 - 1) Monitoring: On/off status, common trouble alarm.
 - 2) Control: On/off operation, chilled-water discharge temperature set-point adjustment.

b. ASHRAE 135 (BACnet) communication interface with building automation system shall enable building automation system operator to remotely control and monitor the water chiller from an operator workstation. Control features and monitoring points displayed locally at water chiller control panel shall be available through building automation system.

L. Insulation:

- 1. Material: Closed-cell, flexible elastomeric, thermal insulation complying with ASTM C 534, Type I, for tubular materials and Type II, for sheet materials.
- 2. Thickness: 3/4 inch.
- 3. Factory-applied insulation over cold surfaces of water chiller components.
 - a. Adhesive: As recommended by insulation manufacturer and applied to 100 percent of insulation contact surface. Seal seams and joints.
- 4. Apply protective coating to exposed surfaces of insulation.

M. Accessories:

- 1. Factory-furnished, chilled-water flow switches for field installation.
- 2. Individual compressor suction and discharge pressure gages with shutoff valves for each refrigeration circuit.
- 3. Factory-furnished neoprene isolators for field installation.

2.2 SOURCE QUALITY CONTROL

- A. Perform functional test of water chillers before shipping.
- B. Factory test and inspect evaporator according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1. Stamp with ASME label.
- C. For water chillers located outdoors, rate sound power level according to ARI 370 procedure.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before water chiller installation, examine roughing-in for equipment support, anchor-bolt sizes and locations, piping, and electrical connections to verify actual locations, sizes, and other conditions affecting water chiller performance, maintenance, and operations.
 - 1. Water chiller locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WATER CHILLER INSTALLATION

- A. Install water chillers on support structure indicated.
- B. Equipment Mounting: Install water chiller on concrete bases using elastomeric pads.
 - 1. Minimum Deflection: 1/4 inch.
 - 2. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 3. Install anchor bolts to elevations required for proper attachment to supported equipment.
- C. Maintain manufacturer's recommended clearances for service and maintenance.
- D. Charge water chiller with refrigerant if not factory charged and fill with oil if not factory installed.
- E. Install separate devices furnished by manufacturer and not factory installed.

3.3 CONNECTIONS

- A. Comply with requirements in Division 23 Section "Hydronic Piping" Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to chiller to allow service and maintenance.
- C. Evaporator Fluid Connections: Connect to evaporator inlet with shutoff valve, strainer, flexible connector, thermometer, and plugged tee with pressure gage. Connect to evaporator outlet with shutoff valve, balancing valve, flexible connector, flow switch, thermometer, plugged tee with pressure gage, and drain connection with valve. Make connections to water chiller with a flange.
- D. Connect each drain connection with a union and drain pipe and extend pipe, full size of connection, to floor drain. Provide a shutoff valve at each connection if required.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assemblies, installations, and connections.
- C. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Verify that refrigerant charge is sufficient and water chiller has been leak tested.
 - 2. Verify that pumps are installed and functional.
 - 3. Verify that thermometers and gages are installed.
 - 4. Operate water chiller for run-in period.
 - 5. Check bearing lubrication and oil levels.

- 6. Verify that refrigerant pressure relief device for chillers installed indoors is vented outside.
- 7. Verify proper motor rotation.
- 8. Verify and record performance of chilled-water flow and low-temperature interlocks.
- 9. Verify and record performance of water chiller protection devices.
- 10. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.
- D. Prepare a written startup report that records results of tests and inspections.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water chillers.

END OF SECTION

SECTION 260000 SUMMARY OF ELECTRICAL WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections shall form a part of this Section, with the same force and effect as though repeated here.

1.2 SUMMARY

- A. In general, the Electrical Work described herein consists of the modification of existing electrical, lighting and signal systems in place and the installation of new electrical, lighting and signal systems equipment. All work shall be completed as directed by the Owner's authorized representative, in accordance with the Contract, Specifications and Construction Documents listed below.
 - General Conditions of Contract
 - 2. Specifications:

Section	Title
260000	Summary of Electrical Work
260100	General Conditions for Electrical Work
260500	Basic Electrical Materials and Methods
262413	Integrated Power center
260526	Grounding
269500	Electrical Acceptance Tests

3. Electrical Construction Drawings as listed on the Drawing Index of the Construction Drawing set:

Number	Title		
E100	Electrical Site Plan		
E110	Enlarged Electrical Site plan		
E200	Electrical Plan – B-Wing Demolition		
E600	Electrical Details		
E700	Single Line Diagram		
E800	Electrical Symbol Legend and Schedules		

- B. This Section includes all necessary and required work to complete the construction as indicated in the Drawings, called for by notes or schedules, or specified herein. This work includes the furnishing of all permits, labor, supervision, services, materials, tools, equipment, testing, transportation and miscellaneous expenses, and the performance of all operations necessary to or incidental to completion of lawful and operating electrical power, lighting and signal systems, whether or not specifically mentioned.
- C. All work not shown in complete detail shall be installed per the CEC and in conformance with the best standard practice for the trade. Any deviation from the approved Drawings

shall be submitted in writing to the Engineer and Owner for approval prior to the installation of the work in question.

- D. This work shall include, but not necessarily be limited to, the following elements:
 - 1. Demolition and Phasing:
 - a. De-energize, disconnect and remove electrical feeds to devices and equipment being removed or relocated.
 - Disconnect and remove existing electrical facilities in areas of remodel and demolition that are not to be reused.
 - c. Make temporary feeds and connections to areas and equipment to allow phased construction and continuing operation.

Electrical Distribution:

- a. Power distribution system, as shown, complete with switchboards, transformers, panelboards, conduits, feeders, pull boxes, fittings and related equipment and equipment pads.
- b. Trenching, conduits and feeders for electrical power including connections to relocatable buildings.

Grounding

- Grounding system including installations of ground rods, ufer grounds, and ground rings, as shown. Connections to water and/or gas piping and building steel.
- b. Provide the following grounding electrodes at each building, bonded together to form the grounding electrode system:
 - Metal underground water pipe in direct contact with the earth for ten feet or more and electrically continuous to the points of connection of the grounding electrode conductor and the bonding conductors.
 - 2) The metal frame of the building, where effectively grounded.
 - 3) Concrete encased electrode (Ufer ground) consisting of a minimum of 20 feet of bare copper conductor (size 4 minimum) encased by a minimum of 2 inches of concrete, located within and near the bottom of a concrete foundation or footing that is in direct contact with the earth.
 - 4) Ground rod of copper clad steel, minimum ¾ inch diameter, minimum 10 feet long, driven full length into the earth. If a maximum resistance to ground of 5 ohms cannot be obtained with a single ground rod, provide additional ground rods installed not closer than 6 feet apart until a maximum resistance to ground of 5 ohms is obtained.
- c. Provide a main ground bus cabinet in the main switchboard room. Provide ground bus cabinets in electrical closets connected to the main ground bus cabinet with a #3/0 copper conductor. Above ground connections of underground cables to equipment and/or structural steel as shown on the Construction drawings and as required by Code.
- d. Bonding of adjacent modular buildings.
- e. Testing of grounding system as outlined in Section 16950 26 95 00.

4. Signal Distribution:

- a. Trenching, conduits and conductors for signal systems including connections to relocatable buildings.
- b. Building mounted conduits and conductors for signal systems including connections to relocatable buildings.
- c. Trenching and conduits for control systems as required by Division 15 21-25 Specification Sections.

5. Building Electrical and Mechanical Systems:

- a. Complete system of branch circuit wiring, conduit and distribution equipment for receptacles and power.
- b. Electrical work associated with mechanical equipment, including conduit, conductor, disconnect switches and motor starters.
- c. Furnish roof jacks for the weatherproofing of each electrical conduit penetrating the roof. Roof jacks shall be of the material specified for the specific roofing system and shall be delivered to the general contractor/construction manager for installation by the roofing contractor.
- d. Connection to all equipment as furnished by other Sections of these Specifications or as listed on Drawings as furnished by Owner.
- e. Remove, extend and re-install electrical devices in/on walls receiving new wall coverings.
- Disconnect, demolish (where possible), and abandon all underground branch circuits and feeders.
- g. Provide new branch circuits and feeders to replace those demolished. Circuits and feeders are to be hidden in walls where wall surfaces are being replaced.
- Provide surface wireways for replacement of circuits and feeders where wall surfaces are to remain.
- 6. Each system shall be terminated, tested and calibrated by a factory-authorized installer. This same installer shall terminate and test any peripheral equipment required for the operation of the system.

7. Equipment Connections

- a. Provide equipment connections and coordination in accordance with manufacturer's recommendations and product submittals.
- b. Provide equipment connections and disconnect switches as required for the following equipment:
 - 1) Mechanical equipment.
 - 2) Owner furnished equipment.
- E. Products supplied by Owner (or others, as noted) and installed by Contractor under this Section.
 - 1. None.
- F. Products supplied by Contractor but not installed under this Section.
 - 1. None.

- G. Work specifically **excluded** from this Division.
 - 1. Furnishing of motors.
- H. The following Sections contain requirements that relate to this Section:
 - 1. None
- I. It shall be understood that the existing conduit with its wiring is presently active (hot), in operation with its pertinent equipment.
- J. It shall be noted that this construction work will be planned and executed during ongoing operation of the facility. Any modifications to the existing equipment currently in operation shall be done during scheduled shutdowns and coordinated with the Owner's authorized representative and facility operating personnel to assure minimum downtime.
- K. In order to avoid disruption to facility operations, certain items of work must be completed before other items of work can be started. Contractor shall coordinate with the Owner's authorized representative as to the sequence of construction activities.
- L. Drawings showing equipment layout, conduit runs, conduit sizes, number of wires, wire types, wire groupings and size will not be furnished. It shall be the Contractor's responsibility to prepare such drawings in accordance with specifications, project requirements and code to facilitate the installation.
- M. Coordinate with the civil engineer to locate the concrete pad and the knock out box in the pad for the high voltage conduits and electrical power circuits.
- N. Furnish, install and connect an underground grounding system, specifically mentioned on drawings as part of this contract, including all necessary materials and connections as required by code and/or as shown on the construction drawing.
- O. Furnish, install and connect all above grade grounding materials and make aboveground connections of underground cables to equipment and/or structural steel as shown on the construction drawings and as required by code.
- P. Size, furnish, install and connect new conduit, conduit fittings, and seal fittings, expansion fittings and supports. This includes above grade as well as underground.
- Q. Size, furnish, and install junction, pull and terminal boxes, in accordance to code requirements and as shown on the construction drawings.
- R. Size, furnish and install all supports required for conduit installation, supports required for the installation of the equipment furnished by this Contractor and equipment furnished by others but installed by this Contractor.
- S. Size and field cut the openings for conduits passing through building walls and/or floors. Close and seal all openings after conduits have been installed and/or removed. Closing shall be compatible with, or of the same material as wall and/or floor.
- T. Furnish and install permanent "DANGER HIGH VOLTAGE" warning signs for the outdoor and indoor switchgear, all unit substations, motor control centers, power distribution panels, and on all doors of all electrical equipment rooms, fenced yards, etc.

- U. Furnish and install markers indicating voltage levels (e.g., 12.47 KV, 277/480V, 120/208V, etc.) for all of the electrical equipment such as motor control centers, local lighting panels, lighting transformers, power panels, switchboards, etc....
- V. Furnish and install new nameplates per specifications on new motor control centers, motors and on all local control stations, control panels, disconnect switches, push button stations, instrument devices, etc.
- W. Furnish and install wire tags in accordance with the specifications indicating wire number as shown on electrical schematics, one line, three line diagrams and specifications.
- X. Furnish, install and connect all power, control and instrumentation cable, including all necessary cable lugs, connectors and terminations.
- Y. Perform all testing per the Specifications (including generator cables) and report to Owner's field representative in a timely manner so as not to impede the scheduled completion of the Contract.
- Z. Furnish all material, labor and testing equipment necessary to check out and test the complete power distribution, control and pneumatic systems for all process and utility equipment in strict accordance with specifications. This shall include check out/start up of systems and/or equipment as directed by Owner.
- AA. Prime paint all uncoated carbon steel items furnished by Contractor.
- BB. Energize low voltage services after testing equipment and wiring in accordance with manufacturer instructions and specifications.
- CC. Provide four 3/4" 10 ft copper ground rods, Cadweld the ground rods to the bare copper #4/0 ground ring. Install a ground rod for each of the generators. Connect ground cable to existing grounding loop at the facility
- DD. Provide a NEMA L5-30 extension cord to the electrical power circuit of each generator to maintain the battery charging circuits.
- EE. Electrical contractor to coordinate with the utility and the plant personnel to schedule an outage to terminate cables at the main bus in the existing main switchboard.

PART 2 - NOT USED

PART 3 - NOT USED

END OF SECTION 260000

SECTION 260100 GENERAL CONDITIONS FOR ELECTRICAL WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections shall form a part of this Section, with the same force and effect as though repeated here.

1.2 SUMMARY

A. The provisions of this Section shall apply to all of the following Sections of Divisions 26-28 of these Specifications and shall be considered a part of these Sections.

1.3 QUALITY ASSURANCE

- A. All work and materials shall fully comply with current rules and regulations of all applicable codes. Nothing in these Drawings or Specifications shall be interpreted as to permit any work not in compliance with these codes. Where work is detailed and/or specified to a more restrictive standard or higher requirement, that standard or requirement shall govern such work. Applicable codes include, but are not limited to, the following:
 - 1. California Code of Regulations (CCR)
 - a. Title 8, Industrial Relations
 - b. Title 17, Public Health
 - c. Title 24, Building Standards
 - 2. 2019 California Building Code.
 - 3. 2019 California Fire Code.
 - 4. 2019 California Electrical Code.
 - 5. Local Codes.
- B. All electrical components, devices and accessories shall be listed with Underwriters Laboratories, Inc. (or other testing agency acceptable to authorities having jurisdiction), shall meet their requirements, shall bear their label wherever standards have been established and label service is regularly furnished by that agency, and shall be marked for intended use.

1.4 PERMITS, FEES AND TAXES

A. The Contractor shall secure all necessary permits and pay all required fees and taxes. He shall notify the proper authorities and have the work inspected and tested as required by jurisdictional requirements, pay all charges in connection therewith, and shall present

- to the Owner properly signed certificates of inspection. Acceptance of the work will not be considered until such certificates have been delivered.
- B. The Owner shall pay all utility company charges related to the new services. This shall include any required street lighting charges.

1.5 TEMPORARY UTILITIES

- A. The Contractor shall fulfill utility requirements for and pay all one-time and monthly charges for temporary construction utility usage.
- B. There is no existing onsite power available to the Contractor for construction. The Contractor shall schedule his work such that the Medium and Low Voltage Electrical work is completed prior to needing onsite electrical power for jobsite trailers and/or construction equipment. The Contractor shall then use the Medium and Low Voltage power distribution system to provide construction power. The Contractor shall supply any supplemental temporary facilities required to provide construction power to the site (i.e. transformers, panels, outlet boxes).

1.6 EXISTING CONDITIONS

- A. The Contractor shall carefully examine the site and existing buildings, compare them with Drawings and Specifications, and shall have satisfied himself as to the conditions to be encountered during the performance of the work. No subsequent allowance shall be made on his behalf for any additional expense he may incur due to failure or neglect of Contractor to examine site and to include existing conditions in bid.
- B. Any work done as an addition, expansion, or remodel of an existing system shall be compatible with that system.
- C. The Contractor shall examine all record drawings made available by the Owner to locate existing underground systems, utilities, conduits, and pipes prior to installing the electrical distribution system. The Contractor shall also examine the site for possible locations of sprinkler pipes. Any damage done to the existing systems during the course of the electrical work, whose locations could be reasonably determined, shall be repaired to the satisfaction of the Owner and the utility or agency involved, at the expense of the Contractor.

1.7 CONDUCT OF THE WORK

A. The Contractor shall maintain on the job a competent foreman or a superintendent at all times to superintend the Work.

1.8 INTERPRETATION OF DRAWINGS AND SPECIFICATIONS

A. The Engineer's decision will be final on interpretation of the Drawings and Specifications. Whenever the words "AS MAY BE DIRECTED", "SUITABLE", or "APPROVED EQUAL", or other words of similar intent and meaning are used, implying that judgment is to be exercised, it is understood that it is in reference to the judgement of the Engineer.

1.9 SUBMITTALS

A. See Specification Section 013300, SUBMITTAL PROCEDURES, for additional information and requirements.

B. Shop Drawings and Product Data

- In addition to the provisions of Specification Section 013300, SUBMITTAL PROCEDURES, all **Shop Drawings and Product Data** shall comply with the following requirements:
 - a. The Contractor shall submit for review, complete sets of Shop Drawings and Product Data brochures for materials and equipment as required by each section of the Specifications.
 - b. All Shop Drawings and Product Data shall be submitted at one time in a neat and orderly fashion in a suitable binder with a Title Sheet including Project, Engineer and Contractor, Table of Contents, and indexed tabs dividing each group of materials or item of equipment. The Specification paragraph number for which they are proposed shall identify all items. The mark number as indicated on Drawings shall also identify all equipment and fixtures.
 - c. Shop Drawings and Product Data submittal shall include manufacturer's name and catalog numbers, dimensions, loads, and all other characteristics and accessories as listed in the Specifications or on the Drawings. All loads, characteristics, and accessories called for in the Specifications or on the Drawings shall be highlighted, circled or underlined on the Shop Drawings and Product Data. Descriptive literature shall be current factory brochures and submittal sheets.
 - d. FAX submittals are not acceptable.
 - e. Material or equipment shall not be ordered or installed until the Engineer processes the written review. Any item omitted from the submittal shall be provided as specified without substitution.
 - f. Prior to submission of the Shop Drawings and Project Data, Contractor shall review and certify that they meet the requirements of the Contract Documents.
 - g. A minimum period of two weeks, exclusive of transmittal time, will be required each time Shop Drawings and/or Product Data are submitted or resubmitted for review. The Contractor shall consider this time when scheduling a submittal date.

C. Submittal Review

- Submittals will be reviewed for general conformance with the design concept, but this
 review does not guarantee quantity shown, nor does it supersede the responsibility of
 the Contractor to provide all materials, equipment and installation in accordance with
 the Drawings and Specifications.
- 2. The Contractor shall agree that Shop Drawings and Product Data submittals processed by the Engineer are not Change Orders and that the purpose of Shop Drawings and Product Data submittals by the Contractor is to demonstrate to the Engineer that the Contractor understands the design concept. The Contractor demonstrates his understanding by indicating which equipment and material he intends to furnish and install and by detailing the fabrication and installation methods he intends to use.

- 3. It shall be clearly understood that the noting of some errors, but the overlooking of others, does not grant the Contractor permission to proceed in error or in conflict with Contract Documents. The Contractor shall agree that if deviations, discrepancies or conflicts between Shop Drawings and Design Drawings and Specifications are discovered either prior to or after Shop Drawing submittals are processed by the Engineer, the Design Drawings and Specifications shall control and shall be followed.
- 4. If a resubmittal is required, submit a complete copy of the Engineer's review letter requiring such with the resubmittal.

D. Substitutions

- 1. See Specification Section 012500, SUBSTITUTION PROCEDURES, for additional information and requirements.
- 2. In addition to the provisions of Specification Section 012500, SUBSTITUTION PROCEDURES, **Substitutions** shall comply with the following requirements:
 - a. Manufacturers, model numbers and other pertinent information listed in the Specifications or on the Drawings are intended to establish minimum standards of performance, function and quality. Unless otherwise noted, the Contractor may submit equivalent compatible UL-listed equipment from other manufacturers for review, as long as the minimum standards are met.
 - b. Calculations and other detailed data indicating how the item was selected shall be included for items that are not specified. Data must be complete enough to permit detailed comparison of every significant feature, function, performance, and quality characteristic that is specified, scheduled or detailed. The comparison must prove that the substituted item equals or exceeds the requirements of the specified item.
 - c. The Contractor shall assume full responsibility that substituted items or procedures will meet the Specification and job requirements and shall be responsible for the cost of redesign and modifications to the work caused by these items.
 - d. At the Engineer's request, the Contractor shall furnish locations where equipment similar to the substituted equipment is installed and operating along with the user's phone numbers and contact person. Satisfactory operation and service history will be considered in the acceptance or rejection of the proposed substitution.

E. Record Drawings

- 1. See Specification Section 017839, PROJECT RECORD DOCUMENTS, for additional information and requirements.
- 2. In addition to the provisions of Specification Section 017839, PROJECT RECORD DOCUMENTS, **Record Drawings** shall comply with the following requirements:
 - a. At the beginning of the Project, one print of each applicable Drawing will be issued to the Contractor specifically for use in preparing Record Drawings. As the work progresses, the Contractor shall maintain a record of all deviations in the work from that indicated on the Drawings. Final locations of all underground work shall be recorded by depth from finished grade and by offset distance from permanent surface structures.

e.g. building, curbs, walks. The original Drawings will be made available to the Contractor, from which he shall have made, a set of reproducible Drawings. The Contractor shall then transfer the changes, notations, etc. from the marked-up prints to the reproducible Drawings. The Record Drawings (marked-up prints and reproducibles) shall be submitted to the Engineer for review, after first securing the Inspector's verification by signature.

F. Operations and Maintenance Instructions

- See Specification Section 017823, OPERATION AND MAINTENANCE DATA, for additional information and requirements.
- In addition to the provisions of Specification Section 017823, OPERATION AND MAINTENANCE DATA **Operations and Maintenance Instructions** shall comply with the following requirements:
 - a. Three copies of Operation and Maintenance Instructions and Wiring Diagrams for all equipment shall be submitted to the Engineer. All instructions shall be clearly identified by marking them with the same designation as the equipment item to which they apply (e.g. UPS-1). All Wiring Diagrams shall agree with reviewed Shop Drawings and indicate the exact field installation.
 - b. All instructions shall be submitted at the same time and shall be bound in a suitable binder with tabs dividing each type of equipment (e.g. MCC, UPS, etc.). Each binder shall be labeled indicating "Operating and Maintenance Instructions, Project Title, Contractor, Date" and shall have a Table of Contents listing all items included.
 - c. The Contractor shall verbally instruct the Owner's maintenance staff in the operation and maintenance of all equipment and systems. The Engineer's office shall be notified 48 hours prior to this meeting.
 - d. The Contractor shall prepare a letter indicating that all Operation and Maintenance Instructions (printed and verbal) have been given to the Owner, to the Owner's satisfaction. This letter shall be acknowledged (signed) by the Owner and submitted to the Engineer.

1.10 COORDINATION

- A. See Specification Section 013113, PROJECT MANAGEMENT AND COORDINATION, for additional information and requirements.
- B. Electrical Drawings are essentially diagrammatic, unless specifically dimensioned. Some work may be shown offset for clarity. The actual locations of all materials, conduits, fixtures, supports, etc. shall be carefully planned prior to installation of any work in order to avoid all interferences with each other, or with architectural, civil, mechanical, plumbing, structural or other elements.
- C. While the size and location of equipment are shown to scale wherever possible, all dimensions and conduit/conductor data shall be verified in the field.
- D. Where the work requires connections to be made to equipment furnished and set in place by others, the Contractor shall obtain exact rough-in dimensions from the manufacturer of such equipment and he shall install the connections in a neat and workmanlike manner.

- E. If discrepancies are discovered between Drawings and Specifications requirements, the more stringent requirement shall apply.
- F. All conflicts shall be called to the attention of the Architect and the Engineer prior to the installation of any work or the ordering of any equipment.
- G. No work shall be prefabricated or installed prior to this coordination. No additional compensation will be considered to the Contractor for any prefabrication or installation performed prior to this coordination.

1.11 SCHEDULING

A. All work shall be scheduled subject to the review of the Architect, Engineer and the Owner. No work shall interfere with the operation of the existing facilities on or adjacent to the site. The Contractor shall have at all times, as conditions permit, a sufficient force of workmen and quantity of materials to install the work for which contracted, as rapidly as possible consistent with good work, and shall cause no delay to other Contractors engaged upon this project or to the Owner.

1.12 WARRANTY

- A. See Specification Section 017836, WARRANTIES, for additional information and requirements.
- B. Guarantee shall be in accordance with the General Conditions. These Specifications may extend the period of the guarantee for certain items. Where such extension are called for, or where items are normally provided with guarantee periods in excess of that called for in the General Conditions, the Certificate of Guarantee shall be furnished to the Owner through the Engineer.
- C. Contractor shall deliver to the Owner a written guarantee on all workmanship, materials and equipment for a period of one (1) year from the date of acceptance by the Owner. Any work found to be faulty during that period of time shall be corrected at once, upon written notification, at the expense of the Contractor. This shall include repair or replacement of the premises that may be damaged as a result of faulty work and materials furnished.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

- A. Materials and equipment shall be new unless otherwise noted.
- B. Materials and equipment of a given type shall be by the same manufacturer.
- C. Materials and equipment shall be covered or otherwise protected during construction as required to maintain the material and equipment in new factory condition until project acceptance. Upon completion of work and prior to final inspection, Contractor shall thoroughly clean all exposed fixtures, trim and equipment, and shall leave the entire installation in neat, clean, and useable condition. Materials and equipment shall be free of

- dents, scratches, marks, shipping tags, and all defacing features at time of project acceptance.
- D. The Contractor shall order materials and equipment in a timely manner to prevent any delay in the construction schedule, and he shall bear any penalty by vendors to meet schedules.
- E. Verify all dimensional information to ensure proper clearance for installation of equipment. Check all materials and equipment after arrival on the jobsite and verify compliance with the Contract Documents.

PART 3 - EXECUTION

3.1 DEMOLITION

- A. The Contractor shall protect existing electrical equipment and installations that are not indicated to be removed. If damaged or disturbed in the course of the Work, remove damaged portions and install new products of equal capacity, quality, and functionality.
- B. Exposed electrical equipment and installations, indicated to be demolished, shall be removed in their entirety.
- C. Buried raceway and wiring, indicated to be abandoned in place, shall be cut 2 inches below the surface of adjacent construction and removed in its entirety. Raceways abandoned in place shall be capped and disturbed surfaces shall be patched to match existing finish.
- D. Demolished material shall be removed from Project site.
- E. Components indicated for relocation shall be removed, stored, cleaned, reinstalled, reconnected, and made operational.

3.2 CUTTING AND PATCHING

- A. The Contractor shall perform all cutting and drilling, or other work, required to provide openings in walls, ceilings, floors, footings, foundations or other structures necessary to accomplish work under this Specification Division. The cutting shall be performed by skilled mechanics of the trades involved.
- B. Cutting or coring shall not impair the strength of the structure. Any damage resulting from this work shall be repaired at the Contractor's expense to the satisfaction of the Architect.
- C. Wherever possible, work shall be done in a concealed and neat workmanlike manner requiring the least amount of cutting of studs, plates and woodwork. Such cutting or notching is allowed only after consultation with and by permission of the Engineer.
- D. The Contractor shall repair and refinish disturbed finish materials and other surfaces to accurately match adjacent undisturbed new or existing structures and surfaces and shall install new fireproofing where existing fire-stopping has been disturbed. The repair and refinishing of materials and other surfaces shall be by skilled mechanics of the trades involved.

E. All cuts are to be clean with no chipping. Where chipping occurs as a result of work in a cut area, a new clean cut shall be made immediately prior to patching.

3.3 EXCAVATION AND BACKFILL

- A. The Contractor shall provide excavation and backfilling required to complete work detailed in the Drawings and Specifications. Unless otherwise noted, minimum earth cover above top of conduit outside building walls shall be 24", not including base and paving in paved areas.
- B. The location of all underground facilities shall be verified with the Owner and utility companies prior to the commencement of any excavation.
- C. The Contractor shall contact Underground Service Alert (USA), at 1-800-642-2444, ten (10) days prior to doing any excavation or trenching, and shall advise USA of the work schedule and comply with their requirements.
- D. The Contractor shall notify the Owner 72 hours prior to any excavation.
- E. Provide all shoring required by site conditions. Where over-excavation occurs, provide compacted sand backfill. Where groundwater is encountered, remove to keep excavation dry, using well points and pumps as required.
- F. The conduit shall be laid on firm soil cut true and even to afford bearing for the full length of the barrel of the conduit.
- G. When the bottom uncovered at sub-grade is soft and, in the opinion of the Engineer, cannot support the conduit, a further depth shall be excavated and refilled to conduit foundation grade as required by the Engineer.
- H. Backfill (where concrete encasement is not required):
 - 1. Material 3" below, 3" around, and to 6" above conduit shall be sand. Place carefully around and on top of conduit, taking care not to disturb conduit. Consolidate with vibrator.
 - 2. Material from 6" Above Conduit to Grade shall be sandy or silty loam, free of lumps, laid in 6" layers, uniformly mixed to proper moisture and compacted to required density. If backfill is determined to be suitable and required compaction is demonstrated by laboratory test, water compaction in 6" layers may be used, subject to review by Engineer.
- I. No excavation below the level of, or adjacent to, foundations of footings shall be made except in a manner approved by the Structural Engineer.

J. Compaction

- Prior to compaction, moisten or aerate each layer as necessary to provide optimum moisture content. Compact each layer to required percentage of maximum dry density or relative dry density for each area classification. Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice.
- 2. Under **Structures**, **Building Slabs**, **Walkways**, **and Steps**, compact top 6" of subgrade and each layer of backfill or fill material at 92% maximum relative

- compaction. Compact upper 2' of backfill in utility trenches or other excavations to 92% minimum relative compaction.
- 3. In **Lawns and Unpaved Areas**, compact top 6" of sub-grade material to 85% relative compaction.
- 4. Under **Pavement**, compact top 8" of sub-grade immediately beneath the base course at 95% minimum relative compaction.

3.4 CONCRETE EQUIPMENT BASES

- A. The Contractor shall provide a concrete equipment base for each piece of electrical equipment required to have a base as shown in the Drawings, Notes and Details.
- B. Concrete equipment bases shall be 6" high concrete, 3500PSI strength, unless otherwise noted. Base shall extend 6" beyond the largest dimensions of the equipment, unless otherwise noted. The top edge of the base shall have a 3/4" chamfer. The base shall have #4 reinforcing bars at 12" on center, each way, located at the mid-depth of the base.
- C. If the base is not poured at the same time as the floor slab with base rebar tied to floor rebar, the base shall be anchored to the floor slab per the following criteria:
 - 1. Drill 1" diameter, 4" deep hole in floor.
 - 2. Fill hole with **Simpson SET-XP (ICC-ES ESR-2509)** then insert 8" long, #4 rebar into hole. Tie this rebar to that required for the equipment base.
 - 3. Provide a minimum of 4 of these anchors per base but no more than 4 feet apart in either direction.
 - 4. Anchor points shall be 12" from the edge of the base.
- D. Concrete anchors shall be steel bolts with expansion anchors requiring a drilled hole. Powder-driven anchors are not acceptable. Minimum concrete embedment shall be 4.5 diameters but not less than manufacturer's requirements for minimum strength. Minimum spacing shall be 10 diameters center-to-center and 5 diameters center to edge of concrete but not less than manufacturer's requirements for minimum strength. Maximum allowable stresses for tension and shear shall be 80% of the ICC-ES test report values.
- E. Where applicable, concrete structures shall be submitted to the serving utility for their approval prior to installation.

3.5 SEISMIC ANCHORAGE AND BRACING

- A. Equipment Anchorage
 - 1. All electrical equipment and components shall be anchored and installed per the details on the DSA approved construction documents. Where no detail is indicated, the following components shall be anchored or braced to meet the force and displacements requirements prescribed in the 2019 CBC, Sections 1617A.1.18 through 1617A.1.26. and ASCE 7-16 Chapter 13, 26, and 30:
 - a. All permanent equipment and components
 - b. Temporary or movable equipment that is permanently attached (e.g. hard wired) to building utility electrical service.

- c. Movable equipment which is stationed in one place for more than 8 hours and heavier than 400 pounds are required to be anchored with temporary attachments.
- 2. The attachment of the following electrical components shall be positively attached to the structure, but need not be detailed on the plans. These components shall have flexible connections provided between the components and associated conduit.
 - a. Components weighting less than 400 pounds and have a center of mass located 4 feet or less above the adjacent floor or roof level that directly support the components.
 - b. Components weighting less than 20 pounds, or in the case of distributed systems, less than 5 pounds per foot, which are suspended from a roof or floor or hung from a wall.

For those elements that do not require details on the approved drawings, the installation shall be subject to the approval of the Structural Engineer of Record and the DSA Structural Engineer. The project inspector will verify that all components and equipment have been anchored in accordance with above requirements.

B. Electrical Distribution System Bracing

- 1. Electrical distribution systems shall be braced to comply with the forces and displacements prescribed in ASCE 7-16 Section 13.3 as defined in ASCE 7-16 Section 13.6.7, 13.6.6, 13.6.5, and 2019 CBC, Sections 1617A.1.23, 1617A.1.24, 1617A.1.25, and 1617A.1.26.
- 2. The bracing and attachments to the structure shall be detailed on the approved drawings or they shall comply with one of the OSHPD Pre-Approvals (OPM#) as modified to satisfy anchorage requirements of ACI 318, Chapter 17.
- 3. Copies of the manual shall be available on the jobsite prior to the start of hanging and bracing of the electrical distribution systems.
- 4. The Structural Engineer of Record shall verify the adequacy of the structure to support the hanger and brace loads.

3.6 CLEANING AND PROTECTION

- A. The Contractor shall, progressively and at completion of the job, thoroughly clean all of his work including outlets, fittings, and devices, and inspect exposed finishes. The Contractor shall remove all burrs, dirt, grease, paint spots, stains, labels, tags, rust, foreign material, and construction debris resulting from his work.
- B. The Contractor shall protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION 260100

SECTION 260500

BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections shall form a part of this Section, with the same force and effect as though repeated here.

1.2 SUMMARY

A. See Section 260000

1.3 STANDARDS

A. NEMA 250 Standard for Enclosures for Electrical Equipment (1000 Volts Maximum)

PART 2 - PRODUCTS

2.1 CONCRETE PADS, PULL BOXES AND MANHOLES

- A. At the Contractor's option, he shall provide cast-in-place or pre-cast structures.
- B. Concrete Forms and Reinforcement Materials shall be as specified in Division 03 Section "Cast-in-Place Concrete".
- C. Concrete shall be 3000-psi, 28-day compressive strength as specified in Division 03 Section "Cast-in-Place concrete".
- D. Weatherproof concrete pull boxes, junction boxes and telephone boxes shall be manufactured by Christy Concrete Products or equal. All boxes shall have lids marked "Power", "Signal", "Fiber Optic", "Danger-High Voltage", etc. and be traffic-rated per CalTrans drawing ES-8 minimum where pull box occurs in vehicular traffic areas.

2.2 RACEWAYS AND FITTINGS

A. Galvanized rigid steel conduit (GRC) shall meet ANSI C80.1, and be heavy wall, hot dipped galvanized inside and out, with threaded ends, for use with threaded type fittings.

- B. Galvanized intermediate metallic conduit (IMC) shall meet ANSI C80.6, be zinc-coated steel and have threaded fittings.
- C. Galvanized electrical metallic tubing (EMT) shall meet ANSI C80.3, and be continuous, seamless steel tubing, galvanized or sherardized on exterior, coated on interior with smooth hard finish of lacquer, varnish or enamel, with steel set-screw, steel compression or die-cast compression type fittings. Provide concrete-tight type compression fittings where required and rain-tight wet location listed compression fittings for outdoor locations.
- D. Rigid non-metallic conduit (RNC) shall meet NEMA TC 2, be Schedule 40 PVC, suitable for 90°C, with solvent cemented type NEMA TC3 fittings.
- E. Flexible metallic conduit (FMC) shall be single strip, continuous, flexible interlocked double-wrapped steel, hot dip galvanized inside and out forming smooth internal wiring channel, with steel, compression type fittings.
- F. Liquid-tight flexible metallic conduit (LFMC) shall be same as FMC except with inert sunlight-resistant, mineral-oil-resistant watertight plastic outer jacket. Fittings shall be cast malleable iron body and gland nut, cadmium plated with one-piece brass grounding bushings threaded to interior of conduit. Spiral molded vinyl-sealing ring between gland nut and bushing and nylon-insulated throat.
- G. All raceway fittings shall be specifically designed for the raceway type with which used.

2.3 METAL CLAD CABLE (TYPE MC)

- A. Type MC Cable shall consist of 3 or more individually insulated 600V THHN/THWN conductors, an overall polypropylene cable assembly tape and an outer galvanized steel or aluminum interlocked armor.
- B. Type MC Cable shall have as one of its conductors a separate full sized equipment grounding conductor as the armor is not considered an equipment grounding means.
- C. Type MC Cable fittings shall be of the single screw clamp variety with steel or cast malleable iron bodies and threaded male hubs with insulated throats. Fittings shall be UL listed for use with MC cable type specified.

2.4 CONDUCTORS

- A. All conductors shall be delivered to the site in their original unbroken packages, plainly marked or tagged with UL labels, size, type of wire, type of insulation, name of the manufacturing company and trade name of the wire.
- B. All conductors shall be minimum of 98% conductivity soft drawn copper. Conductors #8 AWG and larger shall be stranded type "THHN/THWN", 600 Volt insulation. Conductors #10 AWG and smaller shall be solid copper "THHN/THWN", 600 Volt insulation.
- C. Insulation shall be Thermoplastic Type rated at 75 degrees C. minimum.

2.5 PULL BOXES AND WIREWAYS

- A. Pullboxes and Enclosures for outdoor use shall be NEMA 250, Type 3R or Type 4, unless otherwise noted.
- B. Pullboxes and Enclosures for indoor use shall be NEMA 250, Type 1, unless otherwise noted.
- C. Wireways shall be constructed in accordance with UL 870 for wireways, auxiliary gutters and associated fittings. Every component including lengths, connectors and fittings shall be UL Listed.
- D. Wireways and auxiliary gutters shall have continuous removable cover secured with screws and keyhole slots. Hinged cover shall be provided where installed above suspended ceiling.
- E. Fabricated sheet steel pull boxes shall be installed only in dry, protected locations and shall be furnished with knockouts and removable screw cover. Box shall be finished with one coat of zinc chromate and a coat of primer sealer and where exposed to public view shall be painted to match the surrounding surface.
- F. Weatherproof sheet steel pull boxes shall be fabricated of code gauge galvanized sheet steel with two coats of rust resistant finish and shall be furnished with gasket and made completely weathertight.

2.6 WIRING DEVICES AND MATERIALS

- A. Outlet Boxes shall meet NEMA OS1 and be galvanized code gauge steel. Boxes in masonry shall be square cornered. Boxes exposed to weather or in wet locations shall be Type FD cast metal with external threaded hubs and gasketed cover and shall meet NEMA FB1.
- B. Outlet box extensions shall be U.L. listed and shall be attached to box with threaded metal screws. "Flash Guards" are not permitted to be used as box extensions.
- C. Approved manufacturers of metal boxes are Circle AW, Crouse-Hinds, Steel City or equal.
- D. Floor Boxes and Fittings
 - 1. Poke through type shall be Raceway Components, Inc. or Walker.
 - 2. Recessed flush floor box type shall be Steel City or Walker. Floor boxes installed in a concrete slab on grade shall be provided with a concrete pour pan.

E. A/C Snap Switches:

- 1. 120/277 Volt Switches shall be quiet, fast make, fast break design, toggle handle, with totally enclosed case, rated 20 ampere, heavy duty specification grade. Provide matching two pole, 3-way, 4-way, and key switches as required.
- 2. A/C snap switches served by emergency power circuits shall be red.

3. A/C snap switches shall be Hubbell or Leviton 1221 series.

F. Receptacles:

1. Duplex Receptacles:

- a. Duplex Receptacles shall be tamper-resistant, full gang size, polarized duplex, parallel blade, U-grounding slot, specification grade, rated at 20 amperes, 125 volts and designed for split feed service.
- b. Receptacles served by normal power circuits shall be ivory, grey, white or brown, dependent upon room wall finish and as direct by Architect. Receptacles served by emergency power circuits shall be red.
- c. Duplex receptacles shall be Hubbell HBL5362WTR series, or equivalent.

2. GFCI Receptacles:

- a. GFCI receptacles shall be weather-resistant, tamper-resistant, duplex, feed-through type, with integral NEMA WD 6, Configuration 5-20R duplex receptacle arranged to protect connected downstream receptacles on same circuit. Units shall be designed for installation in a 2-3/4-inch deep outlet box without an adapter.
- b. Duplex GFCI receptacles shall be Hubbell #GFTWRST20W series, or equivalent to match regular duplex receptacles.

3. TVSS Receptacles:

- a. TVSS Receptacles shall be Decora Plus duplex, straight blade, industrial grade, self-grounding, surge protected with indicator light, rated at 20 amperes, 125-volts.
- b. TVSS Receptacles shall have integral TVSS with line-to-ground, line-to-neutral, and neutral-to-ground surge protection, with a nominal clamp level rating of 500 volts and minimum single transient pulse energy dissipation of 140 J line to neutral, and 70 J line to ground and neutral to ground.
- c. TVSS Receptacles shall be Hubbell HBL5362WSA series, or equivalent.
- 4. Required California Energy Code Controlled Receptacles: Provide one controlled duplex receptacle within 6-feet of each uncontrolled receptacle in all private offices, open office areas, reception lobbies, conference rooms, kitchenettes in office spaces and copy rooms as required by 2019 California Energy Code Section 130.5(d). Controlled receptacles shall be permanently factory marked with the symbol shown in 2019 CEC Figure 406.3(E) and the word "controlled". Adhesive labels shall not be permitted in lieu of permanent factory marking. Controlled receptacles shall be tamper-resistant Hubbell HBL5362C2WHITR series or equivalent.
- 5. Required Weather-Resistant Receptacles: All 15- and 20-ampere, 125- and 250-volt non-locking type receptacles located outdoors and in damp and wet locations shall be listed weather-resistant type.
- 6. Required Tamper-Resistant Receptacles: Tamper resistant receptacles shall be provided in the following areas where required by CEC 406.12:
 - a. Dwelling units;

- b. Guest rooms and guest suites;
- c. Child care facilities:
- d. Preschool and elementary school education facilities;
- e. Business offices, corridors, waiting rooms and the like in clinics, medical and dental offices and outpatient facilities;
- f. Subset of assembly occupancies described in CEC 518.2 to include places of waiting transportation, gymnasiums, skating rinks and auditoriums;
- g. Dormitories;
- 7. Receptacles for Owner-furnished equipment shall match that equipment's plug configuration.
- 8. Other Receptacles: Other receptacles shall match the plug configuration and ratings required for the utilization equipment that is served.
- G. Device cover plates shall be provided and installed at all wiring devices, switches, outlets, and similar applications, and shall be as directed by architect. Pull boxes and junction boxes to which no fixture is to be attached shall be fitted with blank cover plates painted to match surrounding. All cover plates installed on rated walls shall be brushed stainless steel. Cover plates for receptacles in wet locations shall have an enclosure that is weatherproof whether or not the attachment plug cap is inserted and shall be identified as "extra-duty". Cover plates installed at switches used for lighting control in all multiple occupant restrooms, all hallways and corridors, and in other locations where lockable cover plates are indicated on the Drawings shall be the dustproof locking stainless steel cover Legrand model WP26-L.

2.7 TERMINAL CABINETS AND CLOSETS

A. Cabinets and fronts shall be in accordance with NEMA Standard Publication No. PB1-1971 and UL Standards No. 67. Fronts shall include doors and have flush, brushed stainless steel, cylinder tumbler-type locks with catches and spring loaded door pulls. The flush lock shall not protrude beyond the front of the door. All locks shall be keyed like the panel board locks. Fronts shall have adjustable indicating trim clamps that shall be completely concealed when the doors are closed. Doors shall be mounted by completely concealed steel hinges. Fronts shall not be removable with the door in the locked position. A frame and card with a clear plastic covering shall be provided on the inside of the door. Fronts shall be of code gauge full finished steel with rust inhibiting primer and baked enamel finish.

2.8 PANELBOARDS

- A. Furnish panelboards shown on plans and described herein. All cans shall be a minimum of 20" wide and 5.75" deep unless otherwise shown. They shall be totally flat or equal with flush keyed locks.
- B. Fronts shall be cold rolled sheet steel painted with ANSI 49 gray enamel over a rust inhibitor. They shall be equipped with door, flush hinges, and flush proper cylinder

- tumbler lock, metal circuit card holder, and quarter turn adjustable trim clamps. Panel locks shall be keved alike.
- C. Panel shall consist of reinforced corrosion resistant galvanized sheet steel frame with silver plated copper bus bars and circuit breakers properly supported to prevent vibration breakage in handling. All terminals shall be solderless type suitable for specified conductors of size indicated.
- D. Neutral bus shall be full size. Neutral bus shall be 200% rated when supplied from a double neutral feeder. Provide an equipment ground bus in each panelboard. In addition to the equipment ground bus, provide an isolated ground bus when supplied from a feeder which includes an isolated grounding conductor.
- E. Branch circuit breakers shall be molded case, bolt-on, and fully interchangeable without disturbing adjacent units. All 2-pole and 3-pole breakers shall have common trips. Circuit breakers supplying Class 1 transformers shall be lockable in the off position.
- F. Branch panelboards and overcurrent protection devices shall have a minimum short circuit rating of 10,000 RMS symmetrical AIC (120/208V).
- G. Distribution panelboards and overcurrent protection devices shall have a minimum short circuit rating of 42,000 RMS symmetrical AIC (120/208V).
- H. All Panelboards shall be fully rated as shown on Drawings; series-rating shall not be allowed.
- I. Panelboards shall bear an Arc-Flash Hazard Warning label in accordance with CEC Article 110.16.
- J. Breakers for switching lights shall be type SWD, rated for switching duty. Breakers for mechanical equipment shall be HACR type.
- K. All spaces shall have hardware.

2.9 DISCONNECTING DEVICES

- A. Disconnecting devices shall be provided as shown and/or as required by CEC.
- B. Motor-rated switches shall be toggle-type, quick make-quick break, rated 2 HP, 250 VAC, with number of poles as required. They shall be equipped with overload heaters rated for overload protection of loads controlled.
- C. Motor-rated switches shall be flush-mounted adjacent to load controlled. Where flush mounting is not possible, switches shall be surface mounted in NEMA enclosure suitable for environment in which installed.
- D. Disconnect switches shall be 250V or 600V class, rated heavy-duty, horsepower rated, quick-make, quick-break, dead-front type and provided with proper number of poles.
- E. Disconnect Switches shall be self contained in a NEMA 1 gasketed enclosure (NEMA 3R where installed outdoors) and externally operable from the front.

- F. Fusible disconnect switches shall be equipped with rejection type clips suitable for UL Class R fuses up to 600A and suitable for UL Class L fuses above 600A. Fuse interrupting rating shall be 200,000 RMS symmetrical amperes.
- G. Circuit breakers utilized as disconnecting devices shall comply with the requirements stated in other articles of this section and CEC.

2.10 FUSES

- A. Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Bussman
 - Gould Shawmut
 - Littlefuse.
- B. Fuses 600 amperes and below shall be UL Class RK1, 200,000 RMS symmetrical amperes interrupting rating.
- C. Fuses 601 amperes through 4000 amperes shall be UL Class L, 200,000 RMS symmetrical amperes interrupting rating.

2.11 INDIVIDUAL MOTOR CONTROLLERS:

- A. Individual Motor Controllers shall be self contained in NEMA 1 gasketed enclosure (NEMA 3R where installed outdoors) and externally operable from the front.
- B. Individual Motor Controllers shall be full-voltage non-reversing (FVNR) type combination magnetic starters for motors of ½ HP to 60 HP. Individual Motor Controllers shall be reduced voltage, non-reversing, autotransformer type combination magnetic starters for motors 75 HP and larger.

2.12 MAGNETIC STARTERS FOR MECHANICAL EQUIPMENT

- A. All magnetic starters for mechanical equipment shall be furnished with integral 120VAC control transformers, sized to handle the starter and all controls connected to it pilots, EP valves, etc.
- B. All magnetic starters for mechanical equipment shall be provided with auxiliary contacts as required for interlock to EMS System. An allowance of at least one auxiliary contact per starter shall be estimated.

2.13 SUPPORTING DEVICES

A. Supporting devices shall be constructed of cold-formed steel, with a corrosion-resistant coating acceptable to authorities having jurisdiction.

- B. Metal items for use outdoors or in damp locations shall be hot-dipped galvanized steel.
- C. Slotted-steel channel supports shall have flanged edges turned toward the web, and 9/16-inch diameter slotted holes at a maximum of 2 inches on center, in the web.
 - 1. Channel thickness shall be selected to suit structural loading.
 - 2. Fittings and accessories shall be products of the same manufacturer as the channel supports.
- D. Raceway and cable supports shall be manufactured clevis hangers, riser clamps, straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or click-type hangers.
- E. Pipe sleeves shall be ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, with plain ends.
- F. Cable supports for vertical conduit shall be a factory-fabricated assembly consisting of threaded body and insulating wedging plug for non-armored electrical cables in riser conduits. Plugs shall have number and size of conductor gripping holes as required to suit individual risers. Body shall be constructed of malleable-iron casting with hot-dip galvanized finish.
- G. Concrete anchors shall be steel bolts with expansion anchors requiring a drilled hole. Powder driven anchors are not acceptable.
- H. Toggle bolts shall be all-steel springhead type.

2.14 ELECTRICAL IDENTIFICATION

- A. Identification devices shall be a single type of product for each application category. Colors shall be as prescribed by ANSI A13.1, CEC, and these Specifications.
- B. Raceway and cable labels shall comply with ANSI A13.1, Table 3, for minimum size of letters for legend and minimum length of color field for each raceway and cable size.
 - 1. Pre-tensioned, wraparound plastic sleeves shall be a flexible, preprinted, color-coded, acrylic band sized to suit the diameter of the item it identifies.
 - 2. Preprinted, flexible, self-adhesive, vinyl labels shall have a legend, over-laminated with a clear, weather- and chemical-resistant coating.
 - 3. Color shall be black letters on orange background.
 - 4. Legend shall indicate voltage.
- C. Self-adhesive colored marking tape for raceways, wires and cables shall be vinyl tape, not less than 1 inch wide by 3 mils thick.
- D. Underground Warning Tape shall be vinyl tape, compounded for permanent direct-burial service, not less than 6 inches wide by 4 mils thick, embedded with a continuous metallic strip or core, brightly-colored, continuously-printed with a legend that indicates the type of underground line.

- E. Tape markers for wire shall be vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.
- F. Color-coding cable ties shall be made of Type 6/6 nylon, be self-locking type and of colors to suit coding scheme.
- G. Engraved plastic labels, signs and instruction plates shall be made from black (or red as noted) Bakelite laminate engraving stock with a white core, punched or drilled for mechanical fasteners. It shall have a minimum thickness of 1/16-inch for signs up to 20 sq. in. and a minimum thickness of 1/8-inch for larger sizes.
- H. Interior Warning and Caution signs shall comply with 29 CFR, Chapter XVII, Part 1910.145 and shall be preprinted, aluminum, baked-enamel-finish signs, punched or drilled for mechanical fasteners, with colors, legend, and size appropriate to the application.
- I. Exterior Warning and Caution signs shall comply with 29 CFR, Chapter XVII, Part 1910.145 and shall be weather-resistant, non-fading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch, galvanized-steel backing, with colors, legend, and size appropriate to the application. They shall be equipped with 1/4-inch grommets in each corner for mounting.
- J. Fasteners for nameplates and signs shall be self-tapping, stainless-steel screws or No. 10/32 stainless-steel machine screws with nuts and flat and lock washers.
- K. Arc-Flash Hazard Warning labels shall be provided at electrical equipment such as switchboards, integrated power center, and panelboards in accordance with CEC 110.16.
- L. Circuit Identification A typewritten circuit directory shall be provided at each panelboard and switchboard in accordance with CEC Article 408.4(A). The Contractor shall develop and prepare the circuit identification description based on the as-built condition.
- M. Source of Supply Identification All switchboards, panelboards and transformers shall have a typewritten label applied indicating the device or equipment where the power supply originates per CEC Article 408.4(B).

2.15 TOUCHUP PAINT

- A. Touch-up paint shall be equipment manufacturer's paint selected to match installed equipment finish.
- B. Touch-up paint on galvanized surfaces shall be zinc-rich paint recommended by item manufacturer.

PART 3 - EXECUTION

3.1 ELECTRICAL INSTALLATION

- A. All material, equipment, devices, etc., shall be installed in accordance with the recommendations of the manufacturer of the particular item. The Contractor shall be responsible for all installations contrary to the manufacturer's recommendations. The Contractor shall make all necessary changes and revisions to achieve such compliance. Manufacturer's installation instructions shall be delivered to and maintained at the job site throughout the construction of the project.
- B. The layout and installation of electrical work shall be coordinated with the overall construction schedule to prevent delay in completion of the project.
- C. Dimensions and information regarding accurate locations of equipment and structural limitations and finish shall be verified with other sections.
- D. The drawings do not show all raceway, wiring, offsets, bends, special fittings, junction or pull boxes necessary to meet job conditions. Items not shown as indicated, where are clearly necessary for proper operation or installation of systems shown, shall be provided as required, at no increase in contract price.
- E. Materials and Components shall be installed level, plumb, and parallel and perpendicular to other building systems and components, unless otherwise indicated.
- F. Electrical equipment, outlets, junctions and pull boxes shall be installed in accessible locations, avoiding obstructions, preserving maximum headroom, and keeping openings and passageways clear.
- G. Equipment shall be installed to facilitate service, maintenance, and repair or replacement of components. It shall be connected for ease of disconnecting, with minimum interference with other installations. Minor adjustments in the locations of equipment shall be made where necessary providing such adjustments do not adversely affect function of the equipment. Major adjustments for the location of equipment shall be previously approved and detailed on the Record Drawings.
- H. Right of Way shall be given to raceways and piping systems installed at a required slope.

3.2 PRECAST CONCRETE PULL BOXES AND MANHOLES

- A. Contractor shall provide a minimum of 3-6" of sand base material suitable to receive the pullbox or manhole. The base material shall be compacted and graded level at proper elevation to receive the pullbox or manhole in relation to the conduit grade or ground cover requirements as designated in the plans.
- B. Sealants used between the joints of the pullbox or manhole are at the Contractor's discretion unless otherwise specified. If grout is used, it should consist of two parts plaster sand to one part cement with sufficient water added to make the grout flow under its own weight. The grout should be poured into a water soaked groove and filled to the top of the groove unless a double amount is to be used as a further precaution against leakage. In this case, the mastic sealant should be placed on the two shoulders of the groove. The next section of pullbox or manhole should be placed while the foaming action is in process. Contractor shall verify grades with the Engineer and shall set holes and boxes level at proper grades.

C. All conduits penetrating the pull box or manhole shall have seals to prevent water from entering the raceway.

3.3 RACEWAY APPLICATION

- A. A complete system of surface non-metallic raceways including all fittings and covers shall be installed as required to continuously route raceways around corners, transition between and route down walls, and provide all device terminations. Retaining clips shall be installed such that wiring and cabling shall be retained within the raceway when the cover is removed. All raceway fittings shall be specifically designed for the raceway type with which used. Raceways shall be listed by Underwriters Laboratories Inc.
- B. Galvanized Rigid Steel Conduit (GRC) **may** be used in all locations. Where installed in direct contact with earth, conduit shall be wrapped with two layers of half-lapped 10-mil PVC tape for a total thickness of 40-mil or have a factory applied 40-mil PVC coating.
- C. Galvanized Rigid Steel Conduit (GRC) **shall** be used where exposed to physical damage, indoors where exposed to moisture, in exposed outdoor installations, in systems higher than 600 volts, and where required by code.
- D. Galvanized Intermediate Metallic Conduit (IMC) **may** be used in indoor locations not in direct contact with earth.
- E. Galvanized Electrical Metallic Tubing (EMT) may be used in dry indoor locations according to the following criteria:
 - 1. It is not subject to physical damage.
 - 2. It is not in direct contact with earth.
 - 3. It is not in concrete slabs.
 - It is not in a hazardous area.
- F. Rigid Non-Metallic Conduit (RNC) Schedule 40 PVC **may** be used underground or below concrete slabs on grade. Rigid Non-Metallic Conduit (RNC) Schedule 80 PVC **may** be used to pass through concrete slabs. Rigid Non-Metallic Conduit (RNC) **may** be used in compliance with utility company requirements for utility service conduits. Rigid Non-Metallic Conduit (RNC) **shall not** be installed above grade or above finished floor level.
- G. Liquid-tight Flexible Metallic Conduit (LFMC) **may** be used in all locations to make final connections to motors, transformers, or other mechanical equipment (not to exceed 24 inches in length) or lighting fixtures (not to exceed 72 inches in length). Where specifically approved by the Engineer, LFMC may be used to facilitate wiring in tight locations or in other conditions that make the use of other conduit impracticable.
- H. Flexible Metallic Conduit (FMC) may be used in dry locations to make final connections to motors, transformers, or other mechanical equipment (not to exceed 24 inches in length) or lighting fixtures (not to exceed 72 inches in length). Where specifically approved by the Engineer, FMC may be used to facilitate wiring in tight locations or in other conditions that make the use of other conduit impracticable.

3.4 RACEWAY INSTALLATION

A. General

- 1. Expansion joints shall be provided at building expansion joints or as required due to length of run or difference in temperatures.
- 2. All fittings that are exposed or in damp areas shall have sealing glands and proper gasket.
- 3. In general, all conduits shall be sloping to drain. Bends that place a trap in a conduit shall be avoided. Provided drip fitting as required. Dux-Seal high ends of all underground raceways.
- 4. All conduit runs shall be mechanically and electrically continuous from outlet to outlet. Conduit size or type shall not be changed between outlets.
- 5. All empty raceways shall be equipped with pull lines, capped and labeled. Pull lines shall be 3/16" polypropylene, No. 14 AWG zinc-coated steel or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 24 inches of slack with identification tag at each end of the pull wire.
- 6. Minimum size of any conduit for lighting, power and signal shall be 3/4" conduit unless shown otherwise.
- 7. Use temporary raceway caps to prevent foreign matter from entering. Immediately prior to installation of conductors, conduit shall be blown and swept free of foreign materials. All conduit stubs for future, both above and below grade, shall be capped. Run conduits for spare panelboard circuits to attic or accessible spaces.
- 8. Make conduit bends and offsets so ID is not reduced. Keep legs of bends in the same plane and straight legs of offsets parallel, unless otherwise indicated.
- 9. Make bends in exposed parallel or banked runs from same centerline to make bends parallel. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for exposed parallel raceways.
- There shall be no more than the equivalent of four quarter bends (360-degrees total) between pull points such as pull boxes, outlet boxes or conduit bodies, in one run of conduit.
- 11. Install raceways and cables at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Locate horizontal raceway runs above water and steam piping.
- 12. Conduits shall be securely fastened to building structure at intervals not greater than ten feet.
- 13. Conduit shall be square cut and reamed if required to full size, with thread full cut and true.
- 14. Conduits shall be jointed by approved couplings with ends of conduits tightly butted. Non-insulating compound shall be used in making up joints below grade or inside on grade to insure a watertight system.

- 15. Conduit connections to outlet boxes or cabinets shall be made with approved connectors, using locknuts and insulated throat bushings.
- 16. Complete raceway installation before starting conductor installation.
- 17. Contractor shall provide rubber grommets to fasten galvanized conduit to exterior structures made of dissimilar metals at all exterior locations to prevent galvanic corrosion.
- 18. Contractor shall provide rubber grommets to fasten galvanized conduit to supports which are also used by other systems utilizing piping of dissimilar metals to prevent galvanic corrosion.

B. Interior

- 1. Conceal raceways and cables, unless otherwise indicated, within finished walls, ceilings, and floors.
- All concealed conduits shall be installed in as direct a line as possible between outlets. No more than four quarter bends, or their equivalent, will be allowed between outlets. Feeder conduits shall follow arrangement shown on plans unless a change is authorized. Branch circuit conduits shall, in general, follow arrangement as shown as far as structural conditions permit. All exposed runs shall parallel buildings, walls, or partitions, and be supported on Kindorf Hangers to meet Title 24, Part 3, CEC.

C. Exterior

- 1. Exterior conduit including the sweep below grade and the vertical riser shall be galvanized rigid steel conduit, except where rigid non-metallic conduit is required for utility service conduits by the serving utility company.
- 2. No rigid non-metallic conduit (RNC) shall be installed above grade.

D. Underground

- 1. Two or more power **or** telecommunications conduit runs installed in a common trench shall be separated horizontally by a minimum of four inches (4").
- 2. Two or more power **and** telecommunications conduit runs installed in a common trench shall be separated horizontally by a minimum of twelve inches (12").
- 3. **All** electrical conduit runs installed in a common trench with other utility company lines, plumbing pipes, or heating pipes shall be separated horizontally from such lines by a minimum of twelve inches (12").
- 4. Conduits installed underground and not under buildings shall have a minimum of 24" of cover over the top of the conduit.
- 5. Utility service conduits shall be installed according to the serving utility's requirements for material, depth of cover, and separation.
- 6. Rigid non-metallic conduit shall be laid on excavated firm bed, sealed watertight and unless with 24 inch earth cover, shall have 3 inch minimum concrete encasement unless under concrete. Plastic conduit without encasement shall be random lay, "snaked", not pulled tight. Plastic conduit laid in areas of reinforcing

- steel shall be supported independently at each threaded fitting. Plastic conduit joints shall be full solvent welded.
- 7. Rigid non-metallic conduit installed underground and not below a building slab shall have a galvanized rigid steel long radius elbow installed at the terminating end where the transition from horizontal to vertical occurs.

E. In Concrete Slabs

- 1. Conduit installed within concrete slabs shall be Schedule 80 PVC rigid non-metallic conduit or full weight galvanized rigid steel conduit.
- 2. Conduits in concrete slabs 3 inches thick or less shall not be of size larger than ¾ inch nominal trade size, and wired to top of reinforcing steel.
- 3. Conduit installed in concrete slabs shall be installed in the middle third of the slab thickness where practical, and have at least 1-inch concrete cover.
- 4. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
- 5. Conduit installed in concrete slabs shall be installed side-by-side horizontally and shall have no less than 1" spacing between each conduit to allow for concrete consolidation to prevent voids in the concrete. Conduits that are installed in concrete slabs shall be arranged such that they do not cross over other conduits within the concrete slab. Where crossing of conduits is unavoidable the crossing sets of conduits shall be installed below the slab. No more than 3 conduits shall be installed side-by-side in a concrete slab without special permission from the structural engineer.
- 6. Install conduit larger than 1-inch trade size parallel to or at right angles to main reinforcement. Where conduit is at right angles to reinforcement, place conduit close to slab support.
- 7. Contractor shall be responsible for damages to membrane and shall repair it.

F. Below Grade Level Concrete Building Slab

- All conduits below the building slab shall be Schedule 40 PVC rigid nonmetallic conduit or full weight galvanized rigid steel conduit, and shall have a 6" minimum cover below the floor slab measured from the bottom of the floor slab to the top of the conduit.
- Rigid non-metallic conduits that are 1" trade size or smaller that are installed below the building slab shall transition from Schedule 40 PVC below the building slab to Schedule 80 PVC rigid nonmetallic conduit or galvanized rigid steel conduit, before passing into the concrete building slab and shall transition to galvanized rigid steel conduit or IMC within the concrete building slab before exiting and rising above the building slab.
- 3. Rigid non-metallic conduits that are 1 $\frac{1}{4}$ " trade size or larger that are installed below the building slab shall have a galvanized rigid steel long radius elbow installed at the terminating end where the transition from horizontal to vertical occurs and the vertical riser shall be galvanized rigid steel conduit rising above the building slab.

- 4. Rigid non-metallic conduit installed underground and not below a building slab.
- 5. Where conduits rise through the building slab they shall be installed at sufficient depth so that the curved portion of any bends, sweeps, or 90's are not visible above the finished slab.
- 6. Contractor shall be responsible for damages to membrane and shall repair it.

G. In Beams and Footings

- 1. Conduit in concrete beam and footings shall be perpendicular to direction of beams unless otherwise indicated on structural drawings.
- 2. Conduit shown in concrete beam parallel to beams shall be installed at approximate mid-depth of beam.

H. Flexible Conduit

- 1. LFMC or FMC shall be used to connect motors and equipment subject to vibration, noise transmission, or movement to junction boxes, with a maximum length of 24-inches.
- 2. Install separate ground conductor across flexible connections.
- 3. Flexible conduits shall be independently suspended.

I. Hazardous Locations

- Underground conduit within Class 1 areas shall be threaded rigid metal conduit or intermediate steel conduit per N.E.C. 511 and/or 514.
- Underground conduit below Class 1 areas shall be rigid non-metallic conduit per N.E.C. 511 and/or 514.
- Approved seal-off type fittings shall be used in Class 1 locations per N.E.C.
- 4. Fittings in hazardous areas shall be of the type approved for the particular hazard.

J. Health Care Facilities

1. PVC conduits are prohibited in health care facilities patient care areas per N.E.C. 517-13).

3.5 SURFACE MOUNTED RACEWAY INSTALLATION

- A. Surface Mounted Raceways shall be used only in dry interior locations, as allowed in Article 388 (Surface Nonmetallic Raceways) of the California Electrical Code.
- B. Surface Mounted Raceways and wire distribution systems shall contain no more than six current carrying conductors in each section or compartment. Where additional conductors are required, additional raceway shall be installed to accommodate additional conductors.

C. Electrical and mechanical rooms are specifically excluded from the use of non-metallic Surface Mounted Raceways.

3.6 CONDUCTOR APPLICATION

- A. Feeders and branch circuits shall be Type THHN/THWN insulated conductors in raceway.
- B. Underground feeders and branch circuits shall be Type THWN or single-wire, Type UF insulated conductors in raceway.
- C. Branch circuits for other than lighting circuits shall be Type THW or THHN/THWN insulated conductors in raceway. Lighting branch circuits shall be Type THW or THHN/THWN insulated conductors in raceway where exposed and may be metal-clad cable where concealed in ceilings and gypsum board partitions.
- D. "Minimum conductor size shall be #12 for power and lighting, #14 for 120V control circuits and #18 for 24V control circuits.
- E. Remote control, signaling and power-limited circuits shall be Type THHN/THWN insulated conductors in raceway for Classes 1, 2, and 3, unless otherwise indicated.

3.7 CONDUCTOR INSTALLATION

- A. Conductors shall be continuous from outlet to outlet, no splices shall be made except within outlet or junction boxes.
- B. Wiring at outlets shall be installed with at least 12 inches of slack conductor at each outlet.
- C. Outlet and component connections shall be made to wiring systems and to ground. Electrical connectors and terminals shall be tightened according to manufacturer's published torque-tightening values. Torque values specified in UL 486A shall be used where manufacturer's torque values are not indicated.
- D. Wire in panels, cabinets, pull boxes, and wiring gutters shall be squared, labeled, and neatly grouped with cable ties and fanned out to the terminals.
- E. All branch circuits, fixture wiring joints, splices, and taps for conductors #10 and smaller shall be made with 3M "Scotchlock" connectors, or approved equal.
- F. All branch circuits, fixture wiring joints, splices, and taps for conductors #8 and larger shall be made with two-bolt type solderless connectors or T & B "color keyed" compression lugs.
- G. Bolt-type solderless connectors shall be torqued with a torque wrench according to the manufacturer's recommendations, and then retightened after 24-48 hours before taping.

- Owners' inspector shall be informed of this procedure during the waiting period and shall witness the act of retightening.
- H. Connectors and lugs for terminating stranded conductors #8 and larger shall be machine crimp compression type.
- I. All splices shall be taped with Scotch #88 plastic electrical tape with "Scotch Fill" where necessary for a smooth joint. Scotch #27 or #2520 shall be used for other than normal temperatures or conditions. All connections and splices shall be electrically perfect and in strict accordance with all code requirements.
- J. No splices shall be made below grade in a manhole or pullholes without Engineer's written approval, and then shall be encapsulated with 3M potting kits per 3M Specifications. For larger gauge wire where 3M potting kits are prohibited Contractor shall use submersible UL listed Polaris connectors by NSi.

3.8 WIREWAY AND AUXILIARY GUTTER APPLICATION

A. Wireways and auxiliary gutters shall be used above and below panelboards, lighting relay cabinets, and terminal cabinets to accommodate large concentrations of wires.

3.9 PULL BOXES AND WIREWAYS:

- A. Boxes shall be installed square and plumb. An engraved nameplate shall be installed on each box indicating its function. Nameplate shall be installed on the exterior of each box in unfinished areas and on the interior of each box in finished areas.
- B. Wireways shall be installed with strip-type connectors with self-retained mounting screws. Hangers with two piece, hook together features shall be used to permit preassembly of wireway and hanger bottom plate before hanging on a preinstalled upper bracket.
- C. Pull and junction boxes shall be installed as shown to ease the pulling of wire and to comply with CEC requirements.

3.10 WIRING DEVICES AND MATERIALS

- A. Outlets shall be mounted at 18" minimum above finished floor unless otherwise noted.
- B. The locations of outlets shown on drawings shall be located with respect to work of others and to be symmetrical with room layout.
- C. Outlets in architectural patterned surfaces such as tile and finish panels shall be centered on intersections of four panels or in exact center of panels, unless otherwise shown on architectural plans or directed by Architect.
- D. Outlet boxes for concealed work shall be one-piece steel knock out type with zinc coating. Boxes shall not be smaller than 4" square nominal size, unless otherwise indicated. Extension rings, plaster rings, and covers shall be provided as necessary for flush finish.

- E. The Contractor shall inform himself of wall thickness throughout the building and shall provide outlet boxes of suitable depth that can be flush mounted and yet will be deep enough to contain the particular apparatus involved. Location of exposed pull or junction boxes will be subject to the Architect's approval.
- F. Outlet boxes on opposite sides of walls shall not be placed back-to-back, nor shall "through" boxes be employed (except where specifically permitted on the drawings by note).
- G. Switches shall be mounted 48" to top of device box above finished floor unless otherwise noted.
- H. Where more than one switch occurs at the same location, use multiple gang outlet boxes covered by a single plate; provide box partitions as required by the N.E.C.
- I. Bar hangers shall be used to support outlet boxes in stud or furred partitions and ceilings. Attachment screws, devices, etc., shall be of the proper type to secure boxes to metal studs complemented by expansion shields to concrete and masonry.
- J. All outlet boxes and particularly those supporting fixtures shall be securely anchored in place in an approved manner. Support outlet boxes and fixtures in acoustic ceiling areas from building structures, not from acoustic ceilings. All lighting fixture outlets shall be coordinated with mechanical, architectural, or other equipment to eliminate conflicts and provide a workable, neat installation.
- K. Approved knock out holes shall be provided. Outlet boxes from which light fixtures will be suspended shall be equipped with 3/8" fixture studs fastened through from back of box.
- L. Surface boxes of the cast metal threaded hub type with suitable gasketed covers shall be used for exposed conduit runs less than 5' above a finished floor or where waterproof boxes are required.
- M. Floor boxes shall be adjustable, brass trimmed with carpet flanges where carpet is indicated on architectural drawings.
- N. Set floor boxes level and trim after installation to fit flush to finished floor surface.
- O. Masonry boxes shall have conduit entrances to rear of box with depth as required to clear masonry.
- P. Boxes shall be sized for number of conductors entering box.
- Q. Wiring devices shall be securely fastened to the outlet box. Where the outlet box covers are back from the finished walls, the device shall be built out with washers so that it is rigidly held in place to the box. Metal extenders shall be provided in flammable construction per CEC.
- R. All device screw slots shall be left in a vertical orientation.
- S. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor and to outlet box with bonding jumper.

T. Connect ground terminal of isolated-ground receptacles to isolated-ground conductor routed to designated isolated equipment ground terminal of electrical system.

3.11 PANELBOARDS

- A. All panels shall have, in addition to conduit shown on the drawings, two 3/4" and three 1" conduits stubbed to nearest accessible attic space.
- B. All panels shall be installed with the top of the trim at 6'-0" above the finished floor, unless otherwise indicated on the drawings.
- C. Where space permits, panels shall be surface mounted where they are not visible to the public.
- D. A typewritten directory shall be mounted behind plastic in a metal holder welded to the inside of each panel door showing circuit numbers and complete description of all outlets on each circuit and an Arc-Flash Hazard Warning label shall be applied to each panelboard, switchboard and service entrance in accordance with CEC 110.16.
- E. Labeling of all circuits at panel boards shall match the exact room names of each of the spaces. Verify exact room names with Owner prior to labeling.
- F. Electrical loads shall be disaggregated into separate panelboards per the 2019 California Energy Code Section 130.5(b).

3.12 DISCONNECT DEVICES

- A. Thoroughly examine site conditions for acceptance of disconnects switch installation to verify conformance with manufacturer and specification tolerances. Do not commence with installation until all conditions are made satisfactory.
- B. Coordinate locations of switches and equipment in the field to provide code required clearances in front of switches and to insure that switches are in sight of the controllers as described in NEC Article 430.
- C. Install disconnect switches where indicated on the Drawings.
- Install fuses in fusible disconnect switches.
- E. Include construction channel and mounting hardware as required to support disconnect switch.
- F. Provide engraved, machine screw retained nameplate on each disconnect switch. Name plate shall identify equipment and panelboard + branch circuit breaker.

3.13 SUPPORTING DEVICE APPLICATION

A. Hot-dip galvanized materials or nonmetallic channel and angle system components shall be used in damp locations and outdoors.

- B. Steel materials shall be used in dry locations.
- C. Support clamps for PVC raceways shall be click-type clamp system.
- D. Strength of supports shall be adequate to carry present and future loads, times a safety factor of at least four with a minimum of 200-lb design load.

3.14 SUPPORT INSTALLATION

- A. Install support devices to securely and permanently fasten and support electrical components.
- B. Install individual and multiple raceway hangers and riser clamps to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assemblies and for securing hanger rods and conduits.
- C. Support parallel runs of horizontal raceways together on trapeze- or bracket-type hangers.
- D. Size supports for multiple raceway installations so capacity can be increased by a 25 percent minimum in the future.
- E. Support individual horizontal raceways with separate, malleable-iron pipe hangers or clamps.
- F. Install 1/4-inch diameter or larger threaded steel hanger rods, unless otherwise indicated.
- G. Spring-steel fasteners specifically designed for supporting single conduits or tubing may be used instead of malleable-iron hangers for 1-1/2-inch and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings and for fastening raceways to slotted channel and angle supports.
- H. Arrange supports in vertical runs so the weight of raceways and enclosed conductors is carried entirely by raceway supports, with no weight load on raceway terminals.
- I. Simultaneously install vertical conductor supports with conductors.
- J. Separately support cast boxes that are threaded to raceways and used for fixture support. Support sheet-metal boxes directly from the building structure or by bar hangers. If bar hangers are used, attach bar to raceways on opposite sides of the box and support the raceway with an approved fastener not more than 24 inches from the box.
- K. Install metal channel racks for mounting cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices unless components are mounted directly to structural elements of adequate strength.
- L. Install sleeves for cable and raceway penetrations of concrete slabs and walls unless coredrilled holes are used. Install sleeves for cable and raceway penetrations of masonry and firerated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.

- M. Securely fasten electrical items and their supports to the building structure, according to the following criteria, unless otherwise noted:
 - Wood wood screws or screw-type nails.
 - Masonry toggle bolts on hollow masonry units, expansion bolts on solid masonry units.
 - New Concrete concrete inserts with machine screws and bolts.
 - 4. Existing Concrete expansion bolts.
 - 5. Steel welded threaded studs or spring-tension clamps on steel. Field welding shall comply with AWS D1.1. Welding to steel structure may be used only for threaded studs, not for conduits, pipe straps, or other items.
 - 6. Light Steel sheet-metal screws.
 - 7. Fasteners shall be selected so the load applied to each fastener does not exceed 25 percent of its proof-test load.

3.15 ELECTRICAL IDENTIFICATION

- A. Each conductor of every system shall be permanently tagged in each panelboard, pull box, J-box, etc., in compliance with the Occupational Safety and Health Administration (OSHA).
- B. Brady labels shall be used to identify terminals and destination of feeders, branch circuits, signal and control circuits, etc., at all terminations, junction boxes and pull boxes, and shall be coordinated with the nameplates in all boxes and equipment.
- C. All terminals in the switchboards, panels, relays, switches, devices, starter terminals, etc., shall have Brady labels for identification to identify both ends of all wiring.
- D. The Contractor shall furnish and install 1" x 3" x 3/32" thick laminated black Bakelite nameplates with a white core (unless specifically shown as red) engraved to produce white letters on black background for all items of electrical equipment, including 2-pole and 3-pole circuit breakers, panelboards, starters, relays, time switches and disconnect switches.
- E. All devices shall have their branch circuit identified on the back side of device plate with a permanent type black marker, i.e. CT A-21. Identify panelboard and circuit number from which receptacles are served. Use machine-printed, pressure-sensitive, abrasion-resistant label tape on face of plate and durable wire markers or tags within outlet boxes.
- F. Coordinate names, abbreviations, colors, and other designations used for electrical identification with corresponding designations indicated in the Contract Documents or required by codes and standards. Use consistent designations throughout Project.
- G. Panels having single-pole circuit breakers shall be provided with typed schedules mounted in welded metal holders behind plastic.
- H. Clean surfaces that are to receive self-adhesive identification products before applying.

- I. Where three or more switches are ganged, and elsewhere as indicated, identify each switch with approved legend engraved on wall plate.
- J. Identify raceways and cables with color banding as follows:
 - Bands: Pretensioned, snap-around, colored plastic sleeves or colored adhesive marking tape. Make each color band 2 inches wide, completely encircling conduit, and place adjacent bands of two-color markings in contact, side by side.
 - 2. Band Locations: At changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
 - 3. Colors: As follows:
 - a. Fire Alarm System: Red.
 - b. Security System: Blue and yellow.
 - c. Telecommunication System: Green and yellow.
- K. Tag and label circuits designated to be extended in the future. Identify source and circuit numbers in each cabinet, pull and junction box, and outlet box. Color-coding may be used for voltage and phase identification.
- L. Install continuous underground plastic markers during trench backfilling, for exterior underground power, control, signal, and communication lines located directly above power and communication lines. Locate 6 to 8 inches below finished grade. If width of multiple lines installed in a common trench or concrete envelope does not exceed 16 inches, overall, use a single line marker.
- M. All power conductors shall be identified in accordance with the following schedule:
 - 1. 120/208V, 3 Phase, 4 Wire System.
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - d. Neutral: White.
 - e. Ground: Green
 - 2. 120/240V, 3 Phase, 4 Wire System.
 - a. Phase A: Black.
 - b. Phase B (Stinger): Orange.
 - c. Phase C: Blue.
 - d. Neutral: White
 - e. Ground: Green
 - 3. 277/480V, 3 Phase, 4 Wire System.
 - a. Phase A: Brown.

b. Phase B: Orange.

c. Phase C: Yellow.

d. Neutral: White with a colored stripe or gray.

e. Ground: Green.

4. Isolated ground conductor shall be green with a yellow stripe.

5. Clock wiring shall be 4 #14 TW or THWN, color coded as follows:

a. Hot circuit Black

b. Correction circuit Red

c. Neutral Whited. Ground Green

- N. Install warning, caution, and instruction signs where required to comply with 29 CFR, Chapter XVII, Part 1910.145, and where needed to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.
- O. Install engraved-laminated emergency-operating signs with white letters on red background with minimum 3/8-inch high lettering for emergency instructions on power transfer, load shedding, and other emergency operations.

3.16 UTILITY COMPANY ELECTRICITY-METERING EQUIPMENT

A. Equipment shall be installed according to governing electric utility company's written requirements. Grounding and empty conduits shall be provided as required by utility company.

3.17 FIRESTOPPING

- A. Seal all penetrations for work of this section through fire rated floors, walls and ceilings to prevent the spread of smoke, fire, toxic gas or water through the penetration, either before, during, or after the fire. The fire **and** temperature ratings of the penetration assembly shall be at least that of the floor, wall, or ceiling into which it is installed so that the original fire rating of the floor or wall is maintained as required by Article 300.21 of the California Electrical Code (CEC).
- B. Where applicable, provide OZ Type CFSF/I and CAFSF/I fire seal fittings for conduit and cable penetrations through concrete and masonry walls, floors, slabs and similar structures. Where applicable, provide 3M fire barrier sealing penetration system, and/or Thomas and Bett Flame Safe Fire Stop System, and/or Chase Foam fire stop system, including wall wrap, partitions, caps and other accessories as required. All manufacturers' instructions and recommendations for installation of sealing fittings and barrier sealing systems.

C. The Contractor shall repair and refinish disturbed finish materials and other surfaces to match adjacent undisturbed new structures, surfaces and shall install new fireproofing where existing firestopping has been disturbed. The repair and refinishing of materials and other surfaces shall be by skilled mechanics of the trades involved.

3.18 REFINISHING AND TOUCHUP PAINTING

- A. The Contractor shall clean damaged and disturbed areas and apply primer, intermediate, and finish coats to suit the degree of damage at each location. He shall follow paint manufacturer's written instructions for surface preparation and for timing and application of successive coats.
- B. Damage to galvanized finishes shall be repaired with zinc-rich paint recommended by manufacturer.
- C. Damage to PVC or paint finishes shall be repaired with matching touchup coating recommended by manufacturer.
- D. See Section 09900, "Painting".

3.19 FIELD QUALITY CONTROL

- A. Test Owner's electricity-metering installation for proper operation, accuracy, and usability of output data.
 - Connect a load of known kW rating, 1.5 kW minimum, to a circuit supplied by the metered feeder.
 - 2. Turn off circuits supplied by the metered feeder and secure them in the "off" condition.
 - 3. Run the test load continuously for eight hours, minimum, or longer to obtain a measurable meter indication. Use a test load placement and setting that ensure continuous, safe operation.
 - 4. Check and record meter reading at end of test period and compare with actual electricity used based on test load rating, duration of test, and sample measurements of supply voltage at the test load connection. Record test results.
 - 5. Repair or replace malfunctioning metering equipment or correct test setup; then retest. Repeat for each meter in installation until proper operation of entire system is verified.

3.20 SYSTEM TESTING AND STARTUP

- A. Refer to Specification Section 26 95 00 "Electrical Acceptance Tests" for minimum required systems testing and startup.
- 3.21 TITLE 24 PART 6 DOCUMENTATION OF INSTALLATION AND ACCEPTANCE FOR ELECTRICAL POWER DISTRIBUTION SYSTEMS

- A. The Contractor shall prepare and submit the following Certificates of Installation:
 - 1. Electrical:
 - a. Certificate of Installation Electrical Power Distribution (NRCI-ELE-01-E)

END OF SECTION 260500

SECTION 260526 GROUNDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections shall form a part of this Section, with the same force and effect as though repeated here.

1.2 SUMMARY

A. This Section includes grounding of electrical systems and equipment and basic requirements for grounding for protection of life, equipment, circuits, and systems. Grounding requirements specified in this Section may be supplemented in other Sections of these Specifications.

1.3 SUBMITTALS

- A. Submittals for this Section shall be made according to the Conditions of the Contract, Division 01 Specification Sections and Specification Section 260100.
- B. Product Data for grounding rods, connectors and connection materials, and grounding fittings.
- C. Qualification data for firms specified in "Quality Assurance" Article to demonstrate their capabilities and experience.
- D. Field tests and observation reports certified by the testing organization and indicating and interpreting the test reports for compliance with performance requirements.

1.4 QUALITY ASSURANCE

- A. Testing Agency Qualifications: A "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.7, or a full member company of the InterNational Electrical Testing Association (NETA).
 - Testing Agency Field Supervision: Use persons currently certified by NETA or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- B. Comply with UL 467.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Chance: A. B. Chance Co.
 - 2. Erico Inc.; Electrical Products Group.
 - 3. Galvan Industries, Inc.
 - 4. Lyncole XIT Grounding.
 - 5. Raco, Inc.
 - 6. Thomas & Betts, Electrical.

2.2 GROUNDING AND BONDING PRODUCTS

A. Where types, sizes, ratings, and quantities indicated are in excess of California Electrical Code (CEC) requirements, the more stringent requirements and the greater size, rating, and quantity indications govern.

2.3 WIRE AND CABLE GROUNDING CONDUCTORS

- A. Conform to CEC Table 8, except as otherwise indicated, for conductor properties, including stranding.
 - 1. Material: Copper.
- B. Equipment Grounding Conductors: Insulated with green color insulation.
- C. Grounding-Electrode Conductors: Stranded cable.
- D. Isolated Grounding Conductors: Insulated with green color, yellow striping insulation.
- E. Bare Copper Conductors: Conform to the following:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Assembly of Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.

2.4 MISCELLANEOUS CONDUCTORS

- A. Grounding Bus: Bare, annealed-copper bars of rectangular cross section.
- B. Braided Bonding Jumpers: Copper tape, braided No. 30 AWG bare copper wire, terminated with copper ferrules.
- C. Bonding Straps: Soft copper, 0.05 inch thick and 2 inches wide, except as indicated.

2.5 CONNECTOR PRODUCTS

- A. Grounding connections shall be exothermic welded, bolted clamp terminal, or pressure connector type.
- B. Exothermic-Welded Connections shall be provided in kit form and selected per manufacturer's written instructions for specific types, sizes, and combinations of conductors and connected items.
- Bolted Clamp connectors shall be heavy-duty type.
- D. Pressure connectors shall be high-conductivity-plated units.

2.6 GROUNDING ELECTRODES AND TEST WELLS

- A. Grounding Rods shall be sectional type; copper-clad steel.
 - 1. Size: 3/4 inch by 120 inches.
- B. Plate Electrodes shall be copper, square or rectangular shape. Minimum 0.10 inch thick, size as indicated.
- C. Test Wells shall consist of a Christy Concrete Products F8 Box, or equal.

PART 3 - EXECUTION

3.1 GENERAL

- A. The conduit system, supports, cabinets, switchboards, etc., and neutral conductors must be permanently and effectively grounded by means of approved ground clamps, in accordance with Title 24 of the California Code of Regulations. The neutral shall only be grounded at the main service location unless specifically noted otherwise on the drawings or required by the California Electrical Code.
- B. This Contractor shall exercise every precaution to obtain good contacts at all panel boxes, pull boxes, etc. Where it is not possible to obtain good contacts, the conduits shall be bonded around the boxes with a #6 AWG gauge, THWN wire with ground clamps.
- C. Where there is more than one building supplied from a common service, provide a grounding electrode system at each building per CEC 250.50 and connect per CEC 250.32(B)(1).

3.2 APPLICATION

A. General

1. All equipment cases, motor frames, etc. shall be completely grounded to satisfy applicable code requirements.

- 2. The interior hot and cold water piping and the interior above ground gas piping shall be bonded to the building service equipment per CEC 250.104.
- 3. Do not use underground gas piping as a grounding electrode.

B. Equipment Grounding Conductor

- Pull an Equipment Grounding Conductor, insulated green, in ALL conduits, both metallic and non-metallic, unless they are designated for telephone or data cables.
- 2. Each disconnect switch shall have an Equipment Grounding Conductor (lay in wire type) which shall be used for grounding the disconnect enclosure. The ground wire shall continue and be connected to the enclosure of the equipment served.
- 3. Feeders and branch circuits shall be provided with an insulated grounding conductor run with the circuit conductors. This grounding conductor shall be in addition to the ground path provided by the continuously grounded metallic raceway system that encloses the phase and neutral conductors.
- 4. Comply with CEC Article 250 for types, sizes, and quantities of Equipment Grounding Conductors, except where specific types, larger sizes, or more conductors than required by CEC are indicated.
- 5. Install separate Equipment Grounding Conductor in branch circuit runs from computer area power panels or power-distribution units.

C. Isolated Grounding Conductor

- Pull a separate Isolated Grounding (IG) conductor, insulated green with yellow stripe, to each isolated ground receptacles, in addition to the equipmentgrounding conductor.
- 2. The IG Conductor shall begin at the grounding source of the applicable derived system or service and shall not be connected to any neutral conductor or any item not isolated from the system ground. Each IG circuit shall have a separate neutral **and** a separate IG Conductor (not used for more than one circuit).

D. Isolated Equipment Enclosure Circuits

 For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install an Isolated Grounding Conductor.

E. Air-Duct Equipment Circuits

1. Install an Equipment Grounding Conductor to duct-mounted electrical devices operating at 120 V and above, including air cleaners and heaters. Bond conductor to each unit and to air duct.

3.3 INSTALLATION

A. General: Ground electrical systems and equipment according to CEC requirements, except where Drawings or Specifications exceed CEC requirements.

- B. Grounding Rods: Locate a minimum of 1-rod length from each other and at least the same distance from any other grounding electrode.
 - 1. Drive until tops are 2 inches below finished floor or final grade, except as otherwise indicated.
 - 2. Interconnect with grounding-electrode conductors. Use exothermic welds, except at test wells and as otherwise indicated. Make these connections without damaging copper coating or exposing steel.
- C. Grounding Conductors: Route along the shortest and straightest paths possible, except as otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- D. Underground Grounding Conductors: Use bare copper wire. Bury at least 24 inches below grade.
- E. Metal Water Service Pipe: Provide insulated copper grounding conductors, sized as indicated, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes by grounding-clamp connectors. Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting. Do not install a grounding jumper across dielectric fittings. Bond grounding-conductor conduit to conductor at each end.
- F. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with grounding-clamp connectors.
- G. Bond interior metal piping systems and metal air ducts to equipment grounding conductors of associated pumps, fans, blowers, electric heaters, and air cleaners. Use braided-type bonding straps.
- H. Test Wells: One for each driven grounding electrode, except as otherwise indicated. Set top of well flush with finished grade or floor. Fill with 1-inch- maximum-size crushed stone or gravel.
- I. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to CEC Paragraph 250.52(A)(3), using a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG. Where base of concrete foundation is less than 20 feet in length, coil excess conductor within base of concrete foundation. Bond grounding conductor to reinforcing steel to at least 4 locations, and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to a grounding electrode external to concrete.

3.4 CONNECTIONS

- A. General: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to assure high conductivity and to make contact points closer in order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.

- 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
- 4. Make aluminum-to-galvanized steel connections with tin-plated copper jumpers and mechanical clamps.
- 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
- B. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells. Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.
- C. Equipment Grounding-Wire Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
- D. Non-contact Metal Raceway Terminations: Where metallic raceways or metallic sheathed cables terminate at metal housings without mechanical and electrical connection to the housing, terminate each metallic raceway or metallic sheathed cable with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically non-continuous conduits or sheathed cables at both entrances and exits with grounding bushings and bare grounding conductors, except as otherwise indicated.
- E. Connections at Test Wells: Use compression-type connectors on conductors and make bolted- and clamped-type connections between conductors and grounding rods.
- F. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. Where these requirements are not available, use those specified in UL 486A and UL 486B.
- G. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by manufacturer of connectors. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
- H. Moisture Protection: Where insulated grounding conductors are connected to grounding rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.5 UNDERGROUND DISTRIBUTION SYSTEM GROUNDING

A. Manholes:

- Install a driven ground rod close to wall and set rod depth so 4 inches will extend above finished floor.
- 2. If necessary, install ground rod before manhole is placed and provide a No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall.

3. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

B. Connections to Manhole Components:

- 1. Connect exposed-metal parts, such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole, to ground rod or grounding conductor.
- Make connections with No. 4 AWG minimum, stranded, hard-drawn copper conductor.
- 3. Train conductors level or plumb around corners and fasten to manhole walls.
- 4. Connect to cable armor and cable shields as recommended by manufacturer of splicing and termination kits.

3.6 FIELD QUALITY CONTROL

A. Refer to Specification Section 269500 "Electrical Acceptance Tests" for minimum required testing of Grounding System.

3.7 ADJUSTING AND CLEANING

A. Restore surface features, including vegetation, at areas disturbed by work of this Section. Reestablish original grades, except as otherwise indicated. Where sod has been removed, replace it as soon as possible after backfilling is completed. Restore areas disturbed by trenching, storing of dirt, cable laying, and other activities to their original condition. Include topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Division 02 Section "Landscaping." Maintain restored surfaces. Restore disturbed paving as indicated.

END OF SECTION 260526

SECTION 262413 INTEGRATED POWER CENTER

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Furnish and install the integrated power center as herein specified.

1.2 REFERENCES

- A. The integrated power center and overcurrent protection devices referenced herein shall be designed and manufactured according to the following appropriate specifications.
 - 1. 2019 California Electrical Code (CEC).
 - 2. UL 50 Standard for enclosures for electrical equipment
 - 3. UL 67 Standards for panelboards
 - 4. UL 489 Standards for molded-case Circuit Breakers
 - 5. UL 508A Standards for Industrial controls
 - 6. NEMA AB 1 Standards for molded case circuit breakers
 - 7. NEMA PB 2 Deadfront Distribution Switchboards, File E8681
 - 8. NEMA PB 2.1 Proper Handling, Installation, Operation and Maintenance of Deadfront Switchboards Rated 600 Volts or Less.
 - 9. UL 489 Molded Case Circuit Breakers.
 - 10. UL 891 Dead-Front Switchboards.
 - 11. NFPA 70 National Electric Code (NEC)

1.3 SUBMITTALS

A. Submittals for this Section shall be made according to the Conditions of the Contract, Division 01 Specification Sections and Specification Section 260100.

B. Shop Drawings

1. Submit Shop Drawings for each integrated power center indicating front and side enclosure elevations with overall dimensions, conduit entrance locations and requirements, nameplate legends, one-line diagrams, equipment schedule and integrated power center instrument details.

C. Test Reports

1. Submit certified reports of Independent Tests and Observations indicating and interpreting test results specified in Part 3 of this Section.

- 2. Submit calibration record for all testing devices used.
- 3. Submit certificates, signed by Contractor, certifying that Independent Testing Agency complies with requirements specified in Section 260100 / 269500, Article 1.2.

D. Operation and Maintenance Data

 Submit operation and maintenance data for switchboards to include in "Operations and Maintenance Instructions" manuals specified in Division 01 and Specification Section 260100, Article 1.6, including detailed manufacturer's written instructions on adjusting overcurrent protective devices.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, protect, and handle products in conformance with manufacturer's recommended practices as outlined in applicable Installation and Maintenance Manuals.
- B. Each switchboard section shall be delivered in individual shipping splits for ease of handling. They shall be individually wrapped for protection and mounted on shipping skids.
- C. Inspect and report concealed damage to carrier within their required time period.
- D. Store in a clean, dry space. Maintain factory protection and/or provide an additional heavy canvas or heavy plastic cover to protect structure from dirt, water, construction debris, and traffic. Where applicable, provide adequate heating within enclosures to prevent condensation.
- E. Handle in accordance with NEMA PB 2.1 and manufacturer's written instructions. Lift only by lifting means provided for this express purpose. Handle carefully to avoid damage to switchboard internal components, enclosure, and finish.

1.5 PROJECT CONDITIONS

- A. Verify dimensions by field measurements.
- B. Determine suitable path for moving switchboard into place considering project conditions.
- C. Verify clearance requirements. Locate switchboard to meet installation tolerances.
- D. Revise locations and elevations from those indicated as required to suit project conditions.

1.6 WARRANTY

A. Manufacturer shall warrant equipment to be free from defects in materials and workmanship for the lesser of one (1) year from date of installation or eighteen (18) months from date of purchase.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. This design is based on the use of equipment manufactured by Square D Company. Subject to compliance with project requirements, equivalent products by one of the following manufacturers may be considered:
 - 1. Square D Company;
 - 2. General Electric Company;
 - 3. Eaton;
 - Siemens;

2.2 SWITCHBOARD - GENERAL

- A. Integrated power center shall be rated with a minimum short circuit current rating 65,000 rms symmetrical amperes at 480 VAC maximum. Continuous bus ratings shall be as shown on drawings.
- B. Integrated power center 480Y/277 volt power panels shall be rated with a minimum short circuit current rating 65,000.
- C. Integrated power center 208Y/120 volt power panels shall be rated with a minimum short circuit current rating 22,000.
- D. Integrated power center shall bear an Arc-Flash Hazard warning label in accordance with CEC Article 110.16.
- E. All unused spaces provided, unless otherwise specified, shall be fully equipped for future devices, including all appropriate connectors and mounting hardware.
- F. Enclosure shall be NEMA 250, Type 3R Rain-tight.
 - 1. Sections shall be aligned front and rear.
 - 2. Integrated power center height shall be 91.5 inches including 1.5-inch floor sills and excluding lifting members and pull boxes.
 - 3. The integrated power center frame shall be of formed steel rigidly bolted together to support all cover plates, bussing and component devices during shipment and installation.
 - 4. Steel base channels shall be bolted to the frame to rigidly support the entire shipping section for moving on rollers and floor mounting.
 - 5. Each integrated power center section shall have an open bottom and an individually removable top plate for installation and termination of conduit.
 - 6. Barriers shall be provided between adjacent integrated power center sections.
 - 7. The switchboard enclosure shall be painted on all exterior surfaces in manufacturer's standard color, applied over a corrosion-resistant undercoating.
 - 8. All front covers shall be screw removable with a single tool and all doors shall be hinged with removable hinge pins.

- 9. Top and bottom conduit areas shall be clearly indicated on shop drawings.
- G. Bus Transition and Incoming Line Pull Sections shall be matched and aligned with basic switchboard.
- H. Provide 1in H X 3in W engraved laminated nameplates for each device. Furnish black letters on a white background for all voltages.
- I. Bus Composition shall be plated copper. Plating shall be applied continuously to all bus work. The switchboard bussing shall be of sufficient cross-sectional area to meet UL Standard 891 temperature rise requirements. The phase and neutral through-bus shall have an ampacity as shown in the plans. For 4-wire systems, the neutral shall be of equivalent ampacity as the phase bus bar. Tapered bus is not acceptable. Full provisions for the addition of future sections shall be provided. Bussing shall include all necessary hardware to accommodate splicing for future additions.

J.Bus Connections shall be bolted with Grade 5 bolts and conical spring washers.

- K. Ground Bus shall be sized per NFPA 70 and UL 891 Tables 25.1 and 25.2 and shall extend the entire length of the switchboard. Provisions for the addition of future sections shall be provided.
- L. The integrated power center shall be accessible from the front, left side and right side.

2.3 PANEL INTERIORS

- A. Panel interiors shall be flush mounted with the front of the enclosure to allow easy access to line and/or load conductor's entering/exiting top or bottom. Recessing the panel interior more than 3 inches from the front of the enclosure will not be acceptable.
- B. Power panel interiors shall be I-LINE circuit breaker type rated 600 Vac maximum Refer to product specification 16440-3.3 to obtain interior and circuit breaker specifications.
- C. Appliance panel interiors shall be NQ circuit breaker type rated 208 Vac maximum Refer to product specification 16440-3.2 to obtain interior and circuit breaker specifications.

2.4 INTGRATED TRANSFORMERS

- A. Shall be Square D General Purpose dry type lighting transformers.
- B. Transformer coils shall be copper wound construction and shall be impregnated with nonhygroscopic thermosetting varnish.
- C. Transformers shall have electrostatic shield
- D. Transformer(s) shall be factory installed in a freestanding enclosure as shown on the associated drawings.
- E. Transformers shall be Square D type with the kVA rating as specified on the drawings. Refer to product specification 16460-1 to obtain general lighting and distribution transformer specifications.
- F. Fan cooled transformers will not be allowed.

- G. A GP or EE transformer in combination with a panelboard, individually mounted circuit breaker or lighting controls, shall not exceed 112.5kVA 150° C Rise. 115°C, 80°C or K-Factor are available options but may change the maximum kVA rating.
- H. GP or EE stacked transformers shall not exceed 112.5kVA over a 225kVA 150° C Rise. 115°C, 80°C, K-Factor are available options but may change the maximum kVA rating.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine area to receive switchboard to provide adequate clearance for integrated power center installation.
- B. Check that concrete pads are level and free of irregularities.
- C. Start work only after unsatisfactory conditions are corrected.

3.2 INSTALLATION

- Install integrated power center in accordance with manufacturer's written guidelines, the NEC, and local codes.
- B. Support switchboards on concrete housekeeping bases, 6-inch nominal thickness.
- C. Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.

3.3 CONNECTIONS

- A. Connect integrated power centers and components to wiring systems and to ground as indicated and instructed by manufacturer.
- B. Tighten electrical connectors and terminals, including screws and bolts, according to manufacturer's published torque-tightening values. Where manufacturer's torque values are not indicates, use those specified in UL 786A and UL 486B.

3.4 FIELD QUALITY CONTROL

A. Refer to Specification Section 269500, Electrical Acceptance Testing, for minimum required switchboard testing by Contractor and Independent Testing Agency.

3.5 ADJUSTING

- A. Adjust all operating mechanisms for free mechanical movement per manufacturer's specifications.
- B. Tighten bolted bus connections in accordance with manufacturer's instructions.

C. Adjust circuit breaker trip and time delay settings to values as instructed by the Engineer.

3.6 CLEANING

A. Upon completion of installation, inspect interior and exterior of switchboards. Remove paint spatters and other spots, dirt, and debris. Touch up scratches and mars of finish to match original finish.

END OF SECTION 262413

SECTION 269500 ELECTRICAL ACCEPTANCE TESTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section defines the Electrical Acceptance Tests and checks that shall be made on all electrical equipment and wiring to ensure compliance with all applicable Codes and Standards, and with the requirements of the Contract Documents.
- B. All electrical equipment testing and related costs shall be included in the Contractor's bid.

1.2 GENERAL REQUIREMENTS

- A. The Contractor shall test equipment of all kinds installed on this project to determine whether it fulfills the requirements of these Specifications. The Contractor shall furnish all labor necessary to adjust the operation of the apparatus and make the connections for the tests. After the tests have been completed, the Contractor shall restore all connections, apparatus, etc., to their original condition.
- B. The Contractor shall retain the services of a qualified Independent Testing Agency holding a valid current C-10 License to perform **certain** tests and prepare reports, as enumerated in the following Articles. The Independent Testing Agency shall be a company that specializes in electrical equipment testing and shall be NETA or NICET certified.
- C. Contractor shall obtain approval from the architect of proposed independent testing agency(s) before any testing is started.
- D. Electrical systems, equipment and materials shall be tested prior to final acceptance of the work.

1.3 INDEPENDENT TESTING AGENCY REQUIREMENTS

- A. The Independent Testing Agency shall furnish personnel acceptable to Engineer to conduct testing. Supervising engineer shall have a minimum of five years experience in testing of equipment of the type to be tested on this Project.
- B. The Independent Testing Agency shall furnish all labor required for and incidental to testing.
- C. The Independent Testing Agency shall provide minor field repairs, adjustments, and wiring modifications at the time of inspection and testing.
- D. The Independent Testing Agency shall furnish all necessary test equipment to satisfactorily perform all tests specified herein.
- E. The Independent Testing Agency shall check all devices for proper operation checking for wear, tightness, dirt, etc.

- F. The Independent Testing Agency shall check for conformance to published curves.
- G. The Independent Testing Agency shall notify and coordinate with the Owner's representative at least 3 working days prior to the commencement of any Electrical Acceptance Testing. Tests shall be witnessed by the Owner's representative unless such witnessing is waived in writing by the Owner's Representative.

1.4 CODES AND STANDARDS

- A. 2019 California Electrical Code (CEC).
- B. National Electrical Manufacturer's Association (NEMA).
- C. Manufacturer's Instructions and Maintenance Manual applicable to each particular apparatus.
- D. OSHA Rules and Regulation.
- E. National Electrical Testing Association (NETA) "Acceptance Testing Specifications".
- F. Procedures as directed by Engineer.

1.5 CARE AND PRECAUTIONS

- A. Contractor shall be responsible for any damage to equipment or material due to improper test procedures or test apparatus handling, and shall replace or restore to original condition, any damaged equipment or material.
- B. Contractor shall furnish and use safety devices such as rubber gloves and blankets, protective screens, barriers, and danger signs to adequately protect and warn all personnel in the vicinity of the tests.

1.6 EQUIPMENT TO BE TESTED BY CONTRACTOR

- A. Perform the visual inspections, manual operations and tests on systems and equipment as described in Part 3, "Execution".
- B. Switchboard
- C. Molded Case Circuit Breakers Rated Less Than 100A
- D. Power Cable
- E. Distribution Transformers
- F. Service, Distribution and Motor Control Equipment
- G. Disconnect Switches
- H. Motors

1.7 EQUIPMENT TO BE TESTED BY INDEPENDENT TESTING AGENCY

- A. Circuit Breakers Rated 100A and Greater
- B. Grounding System
- C. Switchboards and Panels

1.8 SUBMITTALS

- A. Submittals for this Section shall be made according to the Conditions of the Contract, Division 01 Specification Sections and Specification Section 260100.
- B. Test Reports
 - 1. Provide written test reports, signed and dated, for all tests prior to acceptance of the tested equipment by the Owner.
 - 2. All tests shall be recorded on the following forms:
 - a. 269500 1 MULTIPLE CONDUCTOR CABLE MEGGER TEST, 300V AND LESS
 - b. 269500 2 SINGLE & MULTIPLE CONDUCTOR POWER CABLE MEGGER TEST, 600V AND LESS
 - 3. Submit certified reports of Independent Tests and Observations indicating and interpreting test results specified in Part 3 of this Section.
 - a. The Test Report shall include the following:
 - 1) Description of equipment tested.
 - 2) Description of test procedure.
 - 3) Calibration record for all testing devices used.
 - 4) Test results.
 - 5) Recommendations.
 - 6) Appendix, including all field test reports.
 - b. Furnish six copies of completed report to the Electrical Engineer no later than ten days after test completion unless requested otherwise by Owner.
 - c. Instrumentation-Traceability: The testing agency shall provide calibration labels for all relays and circuit breakers tested.
 - d. Labels shall be self-adhesive and placed on covers or frames so as not to obscure nameplate, tap block or time dial. Label shall indicate date tested and firm name.

PART 2 - PRODUCTS

2.1 TESTING EQUIPMENT

- A. Furnish suitable electrical instruments including voltmeters, ammeters, wattmeters, tachometers and all other equipment necessary to perform tests specified.
- B. Make necessary openings in circuits for testing instruments and place and connect all instruments, equipment and devices necessary for the tests. Upon completion of tests, remove instruments and instrument connections and restore all circuits to permanent condition.

2.2 TESTING COORDINATION

- A. Coordinate activities and cooperate with others on the Project to ensure that systems are energized when required, when loads are applied, and that other requirements of this Section of the Specifications are carried out in a timely, coordinated basis.
- B. Conduct tests in the presence of the Construction Manager. Notify the Construction Manager seven calendar days or more in advance when any test is to be performed, and do not start tests without the permission of the Construction Manager.
- C. Make up no permanent connections until correct phase sequence of all equipment is determined.

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall provide Acceptance Testing on the entire Electrical System. Certain of this testing shall be performed by an Independent Testing Agency as indicated.
- B. Acceptance Testing shall include Visual Inspections, Manual Operations, Electrical Tests, and Functional Testing.
- C. Whenever possible, all Visual Inspections, Manual Operations and Electrical Tests shall be made just prior to energizing the equipment or circuits, and shall be coordinated with the field schedule and field conditions.
- D. Test reports on megger, dielectric absorption and high potential tests shall include the ambient temperature and relative humidity existing at the time of the tests.
- E. Should any piece of apparatus or any material or work fail during any of these Tests, it shall be immediately removed and be replaced by perfect material by this Contractor at his expense and the portion of the work replaced be again tested by the Contractor.
- F. Before testing and energizing a system, all necessary precautions shall be taken to ensure the safety of personnel and equipment. All conductors and all electrical equipment shall be properly insulated and enclosed. All enclosures for conductors and equipment shall be properly grounded. Insulation resistance measurements must have been made and approved on all conductors and energized parts of electrical equipment.
 - 1. During actual testing, the Contractor or Independent Testing Agency shall:

- a. Ensure that temporary power terminations are connected in such a manner that commercial power may be restored in forty-five minutes upon request.
- b. Place temporary power cables out of the way in a safe manner that provides no hazard to personnel or equipment in the area.
- c. Provide all special connections required.
- d. Conduct all tests in presence of the representative except where advised this would not be necessary.
- G. The entire installation shall be free from short circuits and improper grounds. Panels and circuits shall be tested for grounds and shorts with mains disconnected from the feeder, branches connected, lamps removed or omitted from the sockets and all wall switches closed. Each individual circuit shall be tested at the panel with the equipment connected for proper operation
- H. The following minimum tests are required, but shall not be limited to this list. Tests will be supervised and witnessed by the Construction Manager:
 - 1. Proper phase rotation.
 - Short circuits.
 - 3. Improper grounds.
 - 4. Power and control electrical circuits for circuit continuity and function test.
- I. Furnish all personnel, labor, meters, instruments, cable, connections, equipment and apparatus necessary for making all tests.
- J. Check and test all switchboards, transformers, panelboards, feeders, power and control cables, communication system devices and wiring, and all connections to all equipment.
- K. After wires and cables are in place and connected to devices and equipment, the system shall be tested for short circuits, improper grounds, and other faults. If fault condition is present, the trouble shall be rectified and the wiring system shall be retested.
- L. A voltage test shall be made at each lighting panel, distribution panel and at the last outlet on each circuit. If drop in potential exceeds one percent, correct the condition by locating the ground or high resistance splice or connection and retest.
- M. Any wiring device, electrical apparatus, or lighting fixture grounded or shorted on any integral "live" part, shall be removed and the trouble rectified by replacing the defective parts or materials.
- N. All final tests shall be witnessed by the Construction Manager and three copies of the verified test results shall be given to the Architect/Engineer and Construction Manager promptly upon completion of a test.
- O. Provide assistance to the various equipment manufacturers' field engineers as required in the testing and adjusting of the electrical power and control equipment. Cooperation shall be such that a minimum of time is required for equipment testing.
- P. A log shall be maintained for all tests. This log shall be certified before completion of the project, both as to test value and date of test. All major equipment such as the

switchboard and panelboards shall be energized initially in the presence of the Construction Manager.

Q. The Owner reserves the right to operate any system or equipment prior to final completion and acceptance of the work. Such preliminary operation shall not be construed as an acceptance of any work. Each piece of equipment and all of the systems shall be adjusted to insure proper functioning and shall be left in first class operating condition.

3.2 VISUAL INSPECTIONS

- A. Prior to Manual Operation and Electrical Testing, perform Visual Inspections to verify the following:
 - 1. The equipment is completely and properly installed.
 - 2. The equipment is free from damage and defects.
 - 3. Shipping blocks and restraints have been removed.
 - 4. Electrical terminations have been properly tightened.
 - 5. The equipment has been properly aligned.
 - 6. The equipment has been properly lubricated.
 - 7. The ventilation louvers are open and unobstructed.
 - 8. Voltages and phases have been properly identified.
 - 9. Terminations in control panels have been properly identified.
 - 10. The equipment is ready to be tested

3.3 MANUAL OPERATION

A. Prior to any Electrical Testing, mechanical devices shall be exercised or rotated manually to verify that they operate properly and freely.

3.4 ELECTRICAL TESTS BY CONTRACTOR

- A. Secondary Switchgear
 - 1. Perform a continuity check and 1,000 volt DC megger test on buses, and on main and feeder breakers.
 - Perform a primary current injection test and a 'Ducter' (contact resistance) test on main breakers.
 - 3. Perform a 1,000-volt DC megger test and a turns-ratio test on CT's and PT's.
 - 4. Calibrate the metering.
- B. Switchboard

- 1. The Contractor shall perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification, Sections 7.1, 7.6, 7.9, 7.10, 7.11, and 7.14, as appropriate. Certify compliance with test parameters.
- 2. Switchboard and completed installation shall be inspected for adequate size, bus spacing, bracing, physical damage, proper alignment, anchorage and grounding.
- 3. Switchboard frame will be inspected for alignment, level, and anchorage.
- 4. Check tightness of accessible bolted bus joints using calibrated torque wrench per manufacturer's recommended torque value. All bus bolts will be torqued to their proper value. A mark to be placed on each tightened bolt to ensure completeness.
- 5. Switchboard interior will be vacuumed and wiped clean.
- 6. The following tests and checks shall be performed before placing in operation:
 - a. Check all new bus and cable connections for proper contact pressure and mark each bolt with a red "dot" of paint to indicate it has been checked.
 - b. Check all the new equipment for mechanical adjustment, lubrication, and freedom of operation. Remove all shipping blocks.
 - c. Operate and test trip units for all new breakers.
 - d. Test all transfer switches and associated control circuits for correct connection and operation.
 - e. Test all panel feeders and main breakers.
 - f. Test ground fault systems by operating push-to-test button.
 - g. Physically test key interlock systems to check for proper functionality.
- 7. Using a Megger, measure the insulation resistance of each bus section phase-to-phase and phase-to-ground for one minute each, at minimum test voltage of 1000VDC. Minimum acceptable value for insulation resistance is one (1) megohm. Refer to manufacturer's literature for specific testing procedure.
- C. Molded Case Circuit Breakers rated less than 100A
 - 1. Circuit breakers will be operated manually several times to ensure smooth operation.
 - 2. Molded case will be inspected for cracks.
 - Rated current will be passed through each phase and millivolt readings taken across contacts.
 - 4. Time current characteristic tests will be performed by passing 300% rated current through each phase and monitoring trip time.
 - 5. Instantaneous pickup current will be determined by finding the current level at which the breaker trips out in less than 2 cycles.
 - 6. Insulation resistance tests will be performed at 1000 Volts DC.

- 7. Circuit breaker covers will be removed on unsealed units and checked for cracks. Interphase barriers and arc chutes to be inspected. All bolts and lugs will be tightened. All internal auxiliary devices will be inspected.
- 8. Contacts, shunts, etc., will be visually inspected for wear and alignment.
- 9. Inverse trip time, instantaneous pickup current and millivolt drop across contacts, insulation resistance values, as well as deficiencies causing breaker to function outside published limits will be recorded. Times will then be compared with manufacturer's or NEMA published values.

D. Power Cable

- 1. The 600-volt insulated wires and cables shall be factory tested prior to shipment in accordance with ICEA Standards for the insulation specified.
- 2. Perform a continuity check and a 1,000 volt DC megger test on 600 volt power cables No. 6 AWG and larger.
 - a. The megger test shall be performed between each pair of conductors and from each conductor to ground.
 - b. The megger test shall be performed for 15 seconds or until the insulation resistance value stabilizes.
 - c. The insulation resistance between conductors and from each conductor to ground shall be 100 megohms minimum in one minute or less. In addition, the lowest insulation resistance value shall not differ from the highest value by more than 20 percent.
- 3. Phase conductors, if shorted, grounded or at fault shall be removed, shall be replaced and the wiring system shall be retested.

E. Distribution Transformers

- 1. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 2.5 percent. Submit recording and tap settings as test results.
- 2. Adjust buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- 3. Prepare a written Output Settings Report recording output voltages and tap settings.

F. Service, Distribution and Motor Control Equipment

- 1. Megger tests shall be performed at a DC voltage of 1,000 volts for 600 volt rated equipment, and at 500 volts for 120-300 volt rated equipment.
- 2. Perform a 1,000-volt megger test on buses, motor starters and disconnect switches. This test may be combined with the feeder cable megger test by testing the devices and terminated cables together.
- 3. Perform a continuity check on motor control circuits and control panel internal wiring.
- 4. Perform an operational test on the controls.

5. Perform a continuity check and a 1,000-volt DC megger test on 3 phase distribution and isolation transformers.

G. Disconnect Switches

- Check for cleanliness of contacts, operation, etc.
- 2. Lubricate contacts and mechanical devices.
- Check fuse-clip tightness.
- 4. Perform a 1,000-volt megger test on disconnect switches rated for 600V and at 500 volts for disconnect switches rated for 240V.

H. Motors

- 1. Perform a 1,000-volt megger test on 460 volt, 3 phase motors, and a 500 volt megger test on 200-230 volt, 3 phase motors.
- 2. "Bump" motors to verify proper direction of rotation.
- 3. Run motors and check for vibration and overheating.

3.5 INDEPENDENT AGENCY TESTING

A. Circuit Breakers rated 100A or greater

- 1. All circuit breakers, 100 amps or more, shall be tested by an independent testing agency in accordance with NETA specifications and a report submitted to the architect. Any circuit breaker that does not pass the test shall be replaced.
- 2. Circuit breakers will be operated manually several times to ensure smooth operation.
- Molded case will be inspected for cracks.
- 4. Rated current will be passed through each phase and millivolt readings taken across contacts.
- 5. Time current characteristic tests will be performed by passing 300% rated current through each phase and monitoring trip time.
- 6. Instantaneous pickup current will be determined by finding the current level at which the breaker trips out in less than 2 cycles.
- 7. Insulation resistance tests will be performed at 1000 Volts DC.
- 8. Circuit breaker covers will be removed on unsealed units and checked for cracks. Interphase barriers and arc chutes to be inspected. All bolts and lugs will be tightened. All internal auxiliary devices will be inspected.
- 9. Contacts, shunts, etc., will be visually inspected for wear and alignment.
- 10. Inverse trip time, instantaneous pickup current and millivolt drop across contacts, insulation resistance values, as well as deficiencies causing breaker to function outside published limits will be recorded. Times will then be compared with manufacturer's or NEMA published values.

11. The testing agency shall provide calibration labels for all relays and circuit breakers tested. Labels shall be self-adhesive and placed on covers or frames so as not to obscure nameplate, tap block or time dial. Label shall indicate date tested and firm name.

B. Grounding System

- Test shall be performed for every new SEPARATELLY DERIVED AC SYSTEM.
- 2. Ground tests shall meet the requirements of the California Electrical Code and comply with UL 467. The grounding electrode system at the main electrical service equipment shall be tested by an Independent Testing Agency in accordance with the three point fall of potential method as specified in IEEE Standard 81-1983. Maximum ground resistance shall be 5 OHMS. A copy of the test report shall be submitted to the architect and engineer of record.
- 3. Maximum grounding to resistance values are as follows:
 - a. Equipment Rated 500 kVA and Less: 5 ohms.
 - b. Equipment Rated 500 to 1000 kVA: 5 ohms.
 - c. Equipment Rated More than 1000 kVA: 3 ohms.
- 4. Tests: Subject the completed grounding system to a megger test at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at ground test wells. Measure ground resistance not less than 2 full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance. Perform tests by the 2-point method according to IEEE 81.
- 5. The test agency shall remove the test link between the ground and neutral, and test the neutral for any parallel and/or superfluous ground paths. If any are found, a report should be given to the Engineer. No grounds are to be removed unless authorized in writing.
- 6. Ground electrode resistance shall be taken using a Biddle ground resistance meter and readings given to the report.
- 7. All ground connections in switchboard as well as that to cold water pipes shall be check for tightness and adequacy.
- 8. Measure the resistance to ground of each ground rod [in a ground mat] before connection to the other ground rods. The resistance shall not exceed 10 ohms.
- 9. Measure the resistance to ground of the total ground system with all connections completed. The resistance shall not exceed 2 ohms for primary services or 5 ohms for secondary services.
- 10. Tests of the resistance to ground shall be made using either the three point method or the fall-of-potential method.
- 11. Perform a continuity check from equipment ground bus bars and ground lugs to the ground system.
- 12. Ground rods for manholes and light poles need not be tested.

- 13. Excessive Ground Resistance: Where resistance to ground exceeds specified values, notify Owner promptly and include recommendations to reduce ground resistance and to accomplish recommended work.
- 14. Report: Prepare test reports, certified by the testing organization, of ground resistance at each test location. Include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Switchboards and Panels

- 1. The Independent Testing Agency shall perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification, Sections 7.1, 7.6, 7.9, 7.10, 7.11, and 7.14, as appropriate. Certify compliance with test parameters.
- 2. After Substantial Completion, but not more than 2 months after Final Acceptance, The Independent Testing Agency shall perform an infrared scan of each switchboard and panel.
 - Remove fronts to make joints and connections accessible to a portable scanner.
 - b. Use an approved infrared-scanning device designed to measure temperature or detect significant deviations from normal values.
 - c. Provide calibration record for device used.
 - d. Prepare a certified report identifying switchboards and panels checked and describing results of infrared scanning. Include notation of deficiencies detected, remedial action taken and observations after remedial action.

3.6 FUNCTIONAL TESTING

- A. All automatic and manual functions shall be checked for proper operation.
- B. All indicating circuits, lights and alarms shall be tested for correct operation. Burned out indicators shall be re-lamped.
- C. Upon completion of the Work, place the entire installation in operation, test for proper function, and show systems and equipment to be free of defects.

END OF SECTION 269500

FORM 269500 - 1

MULTIPLE CONDUCTOR CABLE MEGGER TEST, 300 VOLTS & LESS

WIRING - SIGNAL & COMMUNICATION CABLE

Testing shall be performed before connecting the cables to the terminals at either end. Continuity of each conductor shall be checked at this time. Each conductor shall be checked with a 500 volt megger to ground, with all other conductors in the cable and shield, grounded. The minimum acceptable megger resistance shall be 50 megohms for each conductor to ground.

PROJECT NAME	
FEEDER NUMBER	LOCATION
CABLE SIZE	CABLE LENGTH
NO. OF	
CONDUCTORS	INSULATION TYPE
MANUFACTURER	LINE VOLTAGE
TEMPERATURE	HUMIDITY
MEGGER TYPE	SERIAL NUMBER
TEST VOLTAGE	MULTIPLIER
REMARKS	

CONDUCTOR	MEGC)HMS	CONTI	NUITY	CONDUCTOR	MEGO	DHMS	CONTI	NUITY
NO.					NO.				
	C/C	C/S	PASS	FAIL		C/C	C/S	PASS	FAIL

TEST PERFORMED BY										
Signature					D	Date				
TEST WITNESSED BY										
	Si	gnature			D	ate				

FORM 269500 - 2

SINGLE & MULTIPLE CONDUCTOR POWER CABLE MEGGER TEST, 600 VOLTS & LESS

WIRING - FEEDER CIRCUITS

Testing shall be performed before connecting the cables to the terminals at either end. Continuity of each conductor shall be checked at this time. Each conductor shall be checked with a 500 volt megger to ground, with all other conductors (including shield) in the conduit or cable grounded. The minimum acceptable megger resistance shall be 50 megohms for each conductor to ground.

PROJECT NAME	
FEEDER NUMBER	LOCATION
CABLE SIZE	CABLE LENGTH
NO. OF	
CONDUCTORS	INSULATION TYPE
MANUFACTURER	LINE VOLTAGE
TEMPERATURE	HUMIDITY
MEGGER TYPE	SERIAL NUMBER
TEST VOLTAGE	MULTIPLIER
REMARKS	

	MEGOHMS	MEGOHMS	MEGOHMS
Cable No	Phase A	Phase B	Phase C

TEST PERFORMED BY			
	Signature	Date	
TEST WITNESSED BY			
	Signature	Date	

SECTION 311000 SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Protecting existing vegetation to remain.
- 2. Removing existing vegetation.
- 3. Clearing and grubbing.
- 4. Stripping and stockpiling topsoil.
- 5. Removing above and below-grade site improvements.
- 6. Disconnecting, capping or sealing, and removing site utilities.

B. Related Sections:

- 1. Division 01 Section "Construction Waste Management" for management of waste materials.
- 2. Division 31 Section "Earthwork."

1.3 DEFINITIONS

- A. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.
- B. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil," but in disturbed areas such as urban environments, the surface soil can be subsoil.
- C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow.
- D. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.
 - 1. Tree protection shall be defined by a circle concentric with each tree with a radius 1.5 times the diameter of the drip line unless otherwise indicated
- E. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 MATERIALS OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.5 SUBMITTALS

- A. Existing Conditions: Digital photographic documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.
- B. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

1.6 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.7 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Salvable Improvements: Carefully remove items indicated to be salvaged.
 - 1. Salvage for Reinstallation: Clean and store on-site in a secure location, ready for reinstallation.
 - 2. Salvage to Owner: Deliver to Owner's designated location on-site.
- C. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.
- D. Erosion and Sedimentation Control: Do not commence site clearing operations until temporary erosion and sedimentation control and plant-protection measures are in place.
- E. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - Foot traffic.
 - Erection of sheds or structures.

- 5. Impoundment of water.
- 6. Excavation or other digging unless otherwise indicated.
- 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- F. Do not direct vehicle or equipment exhaust towards protection zones.
- G. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.
- H. Soil Stripping, Handling, and Stockpiling: Perform only when the soil is dry or slightly moist.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PREPARATION

- A. Comply with requirements of referenced Geotechnical Report for site clearing operations.
- B. Protect and maintain benchmarks and survey control points from disturbance during construction.
- C. Protect existing site improvements to remain from damage during construction.
 - 1. Restore damaged improvements to their original condition, as acceptable to Owner.
- D. Locate and clearly identify trees, shrubs, and other vegetation to remain or to be relocated. Identify trees to remain by wrapping a 1-inch blue vinyl tie tape flag around each tree trunk at 54 inches above the ground.
- E. Protect trees, plant growth, and vegetation not specifically designated for removal.
- F. Verify that existing plant life to be removed has been authorized for removal.
- G. Examine site and compare individual work areas with the Drawings and Specifications.
- H. Thoroughly investigate and verify conditions under which the work is to be performed.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

A. Comply with Storm Water Pollution Prevention Plan (SWPPP) and requirements of authorities having jurisdiction.

- B. Provide temporary erosion and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to requirements of authorities having jurisdiction.
- C. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- D. Inspect, maintain, and repair erosion and sedimentation-control measures during construction until permanent vegetation has been established.
- E. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 EXISTING UTILITIES

- A. Utilities to Remain: Locate, identify, and protect utilities that are to remain from damage.
- B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.
- C. Utility Termination: Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place. Arrange with utility companies to shut off affected utilities and notify Owner not less than 48 hours in advance of utility termination.
 - 1. Excavate for and remove underground utilities indicated to be removed.

3.4 CLEARING AND GRUBBING

- A. Clear only limited areas required for execution of work at proposed improvement location.
- B. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated
 - 2. Grind down stumps and remove roots, obstructions, and debris to a depth of not less than 24 inches below the bottom of the lowest structure footing or 2 feet below finished subgrade whichever depth is lower. Root systems deeper than indicated above shall be excavated to allow no roots larger than 2 inches in diameter.
 - 3. Use only hand methods for grubbing within protection zones.
 - 4. Chip removed tree branches and dispose of off-site.

- C. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.5 TOPSOIL EXCAVATION

- A. Remove sod, grass, and similar vegetation before stripping topsoil.
- B. Strip topsoil to depth of 6 inches or as indicated in the geotechnical report in a manner to prevent intermingling with underlying subsoil or other waste materials.
 - 1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects more than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 - 1. Limit height of topsoil stockpiles to 72 inches.
 - 2. Do not stockpile topsoil within protection zones.
 - 3. Dispose of surplus topsoil. Surplus topsoil is that which is not to be reused.

3.6 REMOVAL OF SITE IMPROVEMENTS

- A. Remove existing above and below-grade improvements as indicated and necessary to facilitate new construction.
- B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated. Remove paving only where authorized and necessary to execute the Work.
 - 1. Remove concrete slabs, paving, walks, gutters, and curbs to nearest existing joint locations. Neatly saw-cut joints before removing existing pavement, saw-cut faces vertically.
 - 2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.7 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
- B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION

SECTION 312000 EARTHWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Excavating and filling for rough grading the Site.
- 2. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and plants.
- 3. Over excavation of building pad and pavement area.
- 4. Excavating soil and other material for surface improvements.
- 5. Placing fill.
- 6. Compaction of existing ground and fill.
- 7. Preparation of subgrade for other improvements.
- 8. Grading of soil.

B. Related Sections:

- 1. Division 31 Section "Site Clearing."
- 2. Division 31 Section "Trenching."

1.3 REFERENCES

A. ASTM D 1557.

1.4 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
- F. Fill: Soil material used to raise existing grades.
- G. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- H. Subgrade: Uppermost surface of an excavation.
- I. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.5 SUBMITTALS

A. Material Test Reports: Classification according to ASTM D 2487 for each borrow soil material proposed for fill and backfill.

1.6 QUALITY ASSURANCE

A. Preinstallation Conference: Conduct pre-excavation conference at Project site.

1.7 FIELD CONDITIONS

- A. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth moving operations.
- B. Do not commence earth moving operations until temporary erosion and sedimentation control measures required by authorities having jurisdiction are in place.
- C. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- D. Do not commence earth moving operations until plant-protection measures are in place.
- E. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - Foot traffic.

- 4. Erection of sheds or structures.
- 5. Impoundment of water.
- 6. Excavation or other digging unless otherwise indicated.
- 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- F. Do not direct vehicle or equipment exhaust towards protection zones.
- G. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
 - 1. Any borrow soil materials proposed to be brought on-site are subject to inspection and testing by Owner's geotechnical testing agency to verify they are in compliance with referenced standards. Owner shall determine if testing of materials is required prior to any material being brought onto the site. Testing of materials may take up to two weeks to verify compliance with standards.

B. Soil Types:

- 1. Soil Type S1: Excavated and re-used material, graded, free of lumps larger than 3 inches, rocks larger than 2 inches, and debris.
- 2. Soil Type S2: Excavated and reused material, graded, free of roots, lumps greater than one inch, rocks larger than 1/2 inch, debris, weeds and foreign matter.
- 3. Soil Type S3: Imported topsoil, friable loam; reasonably free of roots, rocks larger than 1/2 inch, debris, weeds, and foreign matter.
- 4. Soil Type S4: Imported borrow, suitable for purposes intended, free of vegetable matter and other unsatisfactory material, meeting the following characteristics:
 - a. Maximum Particle Size (inches): 3 inches.
 - b. Maximum Plasticity Index: 9.
 - c. Percentage Passing #4 Sieve: 60-100%.
 - d. Percentage Passing #200 Sieve: 20-70%.
 - e. Expansion Index: Less than 20 (very low expansion).
 - f. R-Value (in paved areas): Minimum 50.
 - g. Corrosion Potential:
 - 1) Soluble Sulfates: Less than 2,000 mg/Kg.
 - 2) Soluble Chlorides: Less than 500 mg/Kg.
 - 3) Soil Resistivity: Greater than 5.000 ohm-cm

5. Soil Type S5: Imported sand. Natural river or bank sand (sand equivalent greater than 30), washed; free of silt, clay, loam, friable or soluble materials, and organic matter.

C Soil for Fills:

- 1. Fill in Turf or Planting Areas: Excavated soils that have been graded and cleansed of excessive organics, debris, rocks, and lumps.
- 2. Fill in Turf or Other Planting Areas: Type S2 or S3.
- 3. Fill in Non-planting Areas: Type S1, S2 or S4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Contractor shall thoroughly examine the project site prior to submitting his bid to familiarize himself with the conditions of the site and the conditions in which he will be required to work.
- B. Contractor shall thoroughly examine contract documents prior to bid.
 - 1. Documents do not necessarily indicate a balanced site.
 - 2. Contractor shall be responsible for importing materials from an off-site location or exporting excess material to an off-site location.

3.2 PREPARATION

- A. Site clearing specified in Division 31 Section "Site Clearing" shall be performed prior to beginning earthwork.
- B. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations. Coordinate excavations near existing utilities with utility companies.
- C. Protect and maintain erosion and sedimentation controls during earth moving operations.
- D. Identify required lines, levels, contours and datum.
- E. Locate, identify, and protect existing above and below grade utilities from damage.
- F. Protect plant life, lawns, trees, shrubs, and other features not authorized for removal.
- G. Employ equipment and methods appropriate to the work site.
- H. Protect excavated areas from drainage inflow, and provide drainage to all excavated areas.

3.3 DEWATERING

- A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.
- C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.

3.4 STORAGE OF SOIL MATERIALS

A. Stockpile excavated satisfactory soil and materials borrow soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust. Stockpile soil materials away from edge of excavations. Do not store within drip line of trees to remain.

3.5 EXCAVATION

- A. Earthwork shall comply with requirements and recommendations in referenced Geotechnical Report.
 - 1. A representative from the Owner's geotechnical testing agency shall be present during earthwork operations.
- B. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
- C. Excavations at Edges of Tree and Plant-Protection Zones: Excavate by hand to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots.
 - 1. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Where authorized to cut roots, cut roots with a saw.
- D. Excavation for Structures: Following the stripping operations, the exposed surface in the area of the planned building improvements and structural concrete slabs-on-grade shall be over excavated to a minimum depth of [18] inches below stripped ground surface or [6] inches below the bottom of proposed footings, whichever is deeper. The

over excavation shall extend at least 5 feet horizontally beyond perimeter exterior edges of proposed footings or structural concrete slabs-on-grade. The exposed ground surface shall be reviewed by a field representative of the Owner's Geotechnical Engineer to evaluate if any loose or soft zones are present that will require additional over excavation. Any areas encountered with debris fill in the subgrade of the over excavation shall be excavated an additional depth equal to the depth of the debris fill and the exact depth shall be determined by a field representative of the Owner's Geotechnical Engineer. The bottom of the over excavation shall be scarified to a depth of 6 inches, moisture conditioned to near optimum moisture content, and compacted as required under the "Compaction" Article.

- 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
- E. Excavation for Pavements and Flatwork: Following the stripping operations, the exposed surface in the area of proposed paved areas shall be over excavated to a minimum depth of [6] inches below stripped ground surface or [6] inches below the proposed pavement subgrade, whichever is deeper. The exposed ground surface shall be reviewed by a field representative of the Owner's Geotechnical Engineer to evaluate if any loose or soft zones are present that will require additional over excavation. Any areas encountered with debris fill in the subgrade of the over excavation shall be excavated an additional depth equal to the depth of the debris fill and the exact depth shall be determined by a field representative of the Owner's Geotechnical Engineer. The bottom of the over excavation shall be scarified to a depth of 6 inches, moisture conditioned to near optimum moisture content, and compacted as required under the "Compaction" Article.

3.6 SUBGRADE INSPECTION

- A. If representative of Owner's geotechnical testing agency determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
- B. Proof-roll subgrade below building slabs, pavements, and walks with equipment of type, size, and weight recommended by representative of Owner's geotechnical testing agency to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 - 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

3.7 FILLING, BACKFILLING, AND COMPACTING

A. After excavation and just prior to filling, the bottom of excavations shall be scarified to a depth of 6 inches, moisture conditioned to a minimum of 2 percent above optimum

- moisture content and compacted to a minimum of 90 percent of maximum density based on ASTM Method D 1557.
- B. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
- C. Fills shall be placed in lifts approximately [6] inches thick, moisture conditioned to a minimum of 2 percent above optimum moisture content and compacted to values indicated.
- D. Place soil fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- E. Compact soil materials to not less than the following percentages of maximum dry unit weight according ASTM D 1557:
 - 1. Under structures, building slabs, steps, and pavements: 95 percent.
 - 2. Under walkways: 92 percent.
 - 3. Under turf or unpaved areas: 85 percent.

3.8 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated on Drawings.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch.
 - 2. Walks: Plus or minus 1/2 inch.
 - 3. Pavements: Plus or minus 1/2 inch.
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.9 FIELD QUALITY CONTROL

- A. Testing and Inspecting Agency: Owner will engage and pay for a qualified independent testing and inspecting agency to perform tests and inspections as applicable and prepare reports.
 - 1. Testing and Inspection Agency shall be acceptable to the Architect and the Division of the State Architect.

B. The Architect and the Division of the State Architect shall have the right to order the testing of any materials used in the construction to determine if they are of the quality specified.

C. Contractor Responsibilities:

- 1. The Contractor shall maintain control of the quality of materials and workmanship in order to conform with the Drawings and Specifications.
- 2. To facilitate testing and inspection, the Contractor shall:
 - a. Schedule tests and inspections with the Testing and Inspection Agency sufficiently in advance of operations to allow for the assignment of personnel and for the completion of testing and inspecting responsibilities.
 - b. Provide access to the Work for the designated Testing and Inspection Agency.
 - c. Furnish all necessary materials and labor to assist the designated Testing and Inspection Agency in obtaining and handling samples at the project or other sources of materials.
 - d. Provide and maintain for the sole use of the Testing and Inspection Agency adequate facilities for safe storage of test specimens on the project site.
- 3. The Contractor shall correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

D. Testing and Inspection Services:

- 1. Testing and inspections shall be performed by the designated Testing and Inspection Agency.
- 2. Testing and inspections shall be in accordance with the 2022 California Building Code, Section 1705A.6 and Table 1705A.6, DSA Testing and Inspections form DSA 103, and Structural Drawings Special Inspection Criteria.
- E. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- F. Compaction testing will be performed in accordance with ASTM D 1557-78 (Method A).
- G. If tests indicate work does not meet specified requirements, recompact, or remove and replace, and retest.

3.10 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

- 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.11 CLEANING AND DISPOSAL OF SURPLUS MATERIALS

- A. Rake Clean.
- B. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.
- C. Adjacent roadways shall be kept clean during the progress of this work.

END OF SECTION

SECTION 312005 TRENCHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Excavating and backfilling trenches for utilities and pits for buried utility structures.

B. Related Sections:

- 1. Division 01 Section "Temporary Facilities and Controls" for temporary controls, utilities, and support facilities; also for temporary site fencing if not in another Section.
- 2. Division 22, 23, and 26 Sections as applicable for installing underground mechanical and electrical utilities and buried mechanical and electrical structures.
- 3. Division 31 Section "Earthwork" for soil types and earth moving.

1.3 DEFINITIONS

A. Utility: Any buried or above ground piping, conduit, ducts, and cables, as well as underground services within buildings.

1.4 SUBMITTALS

- A. Product Data: For each type of the following manufactured products required:
 - 1. Warning tapes.

1.5 PROJECT CONDITIONS

A. Existing Utilities: A diligent attempt has been made to indicate on the Drawings the locations of utilities which may affect the Work. Utility locations are based on information provided by the Owner and limited above grade site observation. The locations of indicated utilities shall be considered approximate only until exposed by the Contractor.

- 1. Maintain existing utilities in constant service during construction of the Work.
- 2. Utility Locator Service: Notify utility locator service for area where Project is located before beginning trenching operations.
- B. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during trenching operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- C. Do not commence trenching operations until temporary erosion and sedimentation control measures are in place.
- D. Do not commence earth moving operations until plant and landscape protection measures are in place.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations. The acceptance of borrowed soil materials shall be subject to review and approval by the architect.
- B. Satisfactory Soils:
 - 1. Soil Type S1: Excavated and re-used material, graded, free of lumps larger than 3 inches, rocks larger than 2 inches, and debris.
 - 2. Soil Type S2: Excavated and reused material, graded, free of roots, lumps greater than one inch, rocks larger than ½ inch, debris, weeds and foreign matter.
 - 3. Soil Type S3: Imported topsoil, friable loam; reasonably free of roots, rocks larger than ½ inch, debris, weeds, and foreign matter.
 - 4. Soil Type S4: Imported borrow, suitable for purposes intended, free of vegetable matter and other unsatisfactory material, with minimum R value of 10 and required.
- C. Sand: ASTM C 33; fine aggregate.

2.2 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility.
 - 1. Detectable Warning Tape: Provided detectable warning tape for underground utilities that would otherwise not be detectable by above ground utility locating

methods. Detectable warning tape shall include metallic core encased in a protective jacket for corrosion protection and be detectable by a metal detector when tape is buried up to 30 inches deep.

2. Colors: Warning tape shall be colored as follows:

a. Red: Electric.b. Yellow: Gas.

c. Orange: Telephone and other communications.

d. Blue: Water systems.e. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by trenching operations.
- B. Locate, identify, and mark existing underground utilities.
- C. Protect plant life, lawns, trees, shrubs, and other features not authorized for removal.
- D. Protect and maintain erosion and sedimentation controls during trenching operations.
- E. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.
- F. Comply with all provisions of the Construction Safety Orders and General Safety Orders of the California Division of Industrial Safety, as well as all other applicable regulations as they pertain to the protection of workers from the hazard of caving ground in excavations.
- G. Prevent surface water and ground water from entering excavations and from flooding Project site and surrounding area. Protect excavations from softening and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.2 EXCAVATION FOR UTILITY TRENCHES

- A. Provide protection for all open excavations, backfill trenches on same day in which excavation occurs to avoid leaving excavations open overnight.
- B. Excavate trenches to lines, depths, and widths required for installation of utilities.
- C. Cut trenches just wide enough to enable installation of utilities and proper backfill, and

to allow inspection.

- D. Employ equipment and methods appropriate to the work site. Small mechanical excavators may be used only in areas where there is sufficient space so as not to damage adjacent improvements, and where the locations of all existing utilities have been determined.
- E. Use hand excavation methods to locate and expose existing utilities along the route of the new work prior to using any mechanical equipment. If mechanical equipment is allowed at a particular location, it may only be used after the completion by the Contractor of a successful exhaustive search by hand methods to locate all existing facilities as indicated on the plans, and as indicated on the ground by utility locating service or Owner.
- F. When excavating through tree roots, perform work by hand and cut roots, where authorized, with a saw.
- G. Excavate trenches to provide not less than the minimum cover required.
- H. Do not interfere with 45 degree bearing splay of foundations.
- I. Hand trim excavations for bell and spigot pipe joints. Remove loose matter.
- J. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- K. Excavate trenches, pits or holes bottoming in hardpan to a minimum of 6 inches below the grade for the bottom of the pipe and any couplings, and then backfill to the pipe grade with satisfactory soil material, thoroughly compacted. No additional payment will be made for such over-excavation and refill.
- L. In trenches where a firm foundation is not encountered, such as soft, spongy, or otherwise unsuitable material, remove the material to a minimum of 12 inches below the bottom of the proposed pipe or structure, or to a depth determined by the Engineer, and backfill the space with satisfactory soil material containing sufficient moisture to produce maximum compaction. No additional payment will be made for such additional excavation or backfill.
- M. Stockpile excavated material to be returned to trench adjacent to trench in location which will not be detrimental to existing improvements, trees, or pedestrian or vehicular traffic. Cover to prevent windblown dust. Remove unsuitable or excess material not being used, from site.

3.3 BACKFILL FOR UTILITY TRENCHES

- A. Prior to placing backfill in excavations, complete the following:
 - 1. Survey locations of underground utilities for Record Documents.
 - 2. Test and inspect underground utilities.

- 3. Remove trash and debris.
- 4. Remove temporary shoring and bracing.
- B. Backfilling and Compaction: Carefully place and compact backfill of satisfactory soil materials as follows:
 - 1. Initial Backfill: Place initial backfill of satisfactory soil free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit. Carefully compact initial backfill evenly on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit.
 - 2. Subsequent Backfill: Place backfill of satisfactory soil material in layers not more than 8 inches in loose depth and carefully compact.
 - 3. Final Backfill: Place final backfill in thickness required, but not more than 8 inches, to achieve final subgrade elevation after compaction and as required for grading.
 - 4. Compaction: Compact soil using hand operated tampers or lightweight power operated tamping equipment that will not damage or displace installed utilities. Compact each layer of backfill to not less than the following percentages of maximum dry unit weight according to ASTM D 1557:
 - a. Turf or Unpaved Areas: 85%.
 - b. Areas Under Paving: 93% for the top 24 inches below the subgrade elevation, 85% for depths over 24 inches below the subgrade elevation.
- C. Trenches under Roadways: Provide 4-inch thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Division 03 Section "Cast-in-Place Concrete."
- D. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.
- E. Soil Moisture Control: Uniformly moisten or aerate soil materials before compaction to within 2 percent of optimum moisture content.
 - 1. Do not over moisten or flood trenches to move or settle soil materials.
 - 2. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 3. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.
- F. Grading: Uniformly grade areas to be smooth and flush with adjacent grade free of irregular or abrupt surface changes. Provide final grading in turf or landscaped areas where no further grading will occur.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified geotechnical engineering testing

- agency to perform tests and inspections.
- B. Allow testing agency to inspect and test each fill or backfill layer. Proceed with subsequent Work only after test results for previously completed work comply with requirements.
- C. Testing agency will test compaction of soils in place according to ASTM D 1557. Tests will be performed at the following locations and frequencies:
 - 1. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet or less of trench length, but no fewer than two tests.
- D. When testing agency reports that backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.5 PROTECTION

- A. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.6 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION

SECTION 315000 EXCAVATION SUPPORT AND PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes temporary excavation support and protection systems.
- B. Related Requirements:
 - 1. Division 01 Section "Photographic Documentation" for recording preexisting conditions and excavation support and protection system progress.
 - 2. Division 31 Section "Earthwork" for excavating and backfilling.
 - 3. Division 31 Section "Trenching" for excavating and backfilling trenches.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review geotechnical report.
 - 2. Review existing utilities and subsurface conditions.
 - 3. Review coordination for interruption, shutoff, capping, and continuation of utility services.
 - 4. Review proposed excavations.
 - 5. Review proposed equipment.
 - 6. Review monitoring of excavation support and protection system.
 - 7. Review coordination with waterproofing.
 - 8. Review abandonment or removal of excavation support and protection system.

1.4 SUBMITTALS

- A. Shop Drawings: For excavation support and protection system, prepared by or under the supervision of a qualified structural engineer licensed in the State of California.
 - 1. Include plans, elevations, sections, and details.
 - 2. Show arrangement, locations, and details of soldier piles, piling, lagging, tiebacks, bracing, and other components of excavation support and protection system according to engineering design.
 - 3. Indicate type and location of waterproofing.

- 4. Include a written plan for excavation support and protection, including sequence of construction of support and protection coordinated with progress of excavation.
- B. Calculations: For excavation support and protection system. Include analysis data signed and sealed by a qualified structural engineer licensed in the State of California responsible for their preparation.
- C. Existing Conditions: Using photographs to show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by inadequate performance of excavation support and protection systems. Submit before Work begins.
- D. Record Drawings: Identify locations and depths of capped utilities, abandoned-in-place support and protection systems, and other subsurface structural, electrical, or mechanical conditions.

1.5 FIELD CONDITIONS

- A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from the data.
 - 1. Make additional test borings and conduct other exploratory operations necessary for excavation support and protection according to the performance requirements.
 - 2. The geotechnical report is included and referenced elsewhere in Project Manual.
- B. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Design, monitor, and maintain excavation support and protection system capable of supporting excavation sidewalls and of resisting earth and hydrostatic pressures and superimposed and construction loads.
 - 1. Contractor Design: Design excavation support and protection system, including comprehensive engineering analysis by a qualified structural engineer.
 - 2. Prevent surface water from entering excavations by grading, dikes, or other
 - 3. Install excavation support and protection systems without damaging existing

- buildings, structures, and site improvements adjacent to excavation.
- 4. Provide level survey and continuously monitor vibrations, settlements, and movements to ensure stability of excavations and constructed slopes and to ensure that damage to permanent structures is prevented.

2.2 MATERIALS

- A. General: Provide materials that are either new or in serviceable condition.
- B. Structural Steel: ASTM A 36/A 36M, ASTM A 690/A 690M, or ASTM A 992/A 992M.
- C. Steel Sheet Piling: ASTM A 328/A 328M, ASTM A 572/A 572M, or ASTM A 690/A 690M; with continuous interlocks.
- D. Wood Lagging: Lumber, nominal rough thickness of size and strength required for application.
- E. Cast-in-Place Concrete: Comply with Division 03 Section "Cast-in-Place Concrete" and of compressive strength required for application.
- F. Reinforcing Bars: Comply with Division 03 Section "Cast-in-Place Concrete."

PART 3 - EXECUTION

3.1 EXCAVATION SUPPORT AND PROTECTION

- A. Level Survey: Provide level survey of existing structures and site improvements prior to earthwork operations; resurvey daily during earthwork operations and for as long as excavations remain open. Maintain an accurate log of surveyed elevations and positions for comparison with original elevations and positions. Promptly notify Architect if changes in elevations or positions occur or if cracks, sags, or other damage is evident in adjacent construction.
- B. Excavation Support and Protection: Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards that could develop during excavation operations when either of the following conditions occurs:
 - 1. Where excavations are required to extend below a 1.5 horizontal to 1 vertical line below the bottom of existing foundations to remain.
 - 2. When existing foundations move more than 1 inch.
- C. Install excavation support and protection systems to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
 - Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

- D. Locate excavation support and protection systems clear of permanent construction so that construction and finishing of other work is not impeded.
- E. Promptly correct detected bulges, breakage, or other evidence of movement to ensure that excavation support and protection system remains stable.
- F. Promptly repair damages to adjacent facilities caused by installation or faulty performance of excavation support and protection systems.

3.2 REMOVAL

A. Remove excavation support and protection systems when construction has progressed sufficiently to support excavation and earth and hydrostatic pressures. Remove in stages to avoid disturbing underlying soils and rock or damaging structures, pavements, facilities, and utilities.

END OF SECTION

CONCRETE PAVING AND WALKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. SSCDOT Standard Specifications, State of California, Department of Transportation (Caltrans) latest edition, except references to method of payment, and references to any state furnished materials.

1.2 SUMMARY

- A. Section Includes: Concrete paving for the following where new work occurs (if any):
 - 1. Driveways.
 - 2. Parking lots.
 - 3. Curbs, gutters, walks and pedestrian paving.
- B. Related Sections:
 - Division 31 Section "Earthwork."

1.3 DEFINITIONS

A. Cementitious Materials: Type II gray Portland Cement conforming to the specifications of ASTM C150-02a and the requirements of Caltrans Specification Section 90 for "Type II Modified" portland cement.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
- C. Material Test Reports: For each of the following:
 - 1. Aggregates. Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.
- D. Delivery Tags: Delivery tags for all concrete.

1.5 QUALITY ASSURANCE

- A. All improvements within property owned by a City, County, or State Entity shall be in accordance with the Standards and Specifications of the authority having jurisdiction.
- B. Installer Qualifications: A qualified installer who employs on Project personnel who shall be thoroughly familiar with the specified requirements, completely trained and experienced in the necessary skills required for work performed under this Section. In actual installation of the work of this Section, use adequate numbers of skilled workmen to insure installation in strict accordance with the contract documents design.
- C. Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
- D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
- E. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5.
 - 2. ACI 318-14, "Building Code Requirements for Structural Concrete" with amendments per 2019 California Building Code, Chapter 19, Section 1905.
 - 3. ACI 318-14, "Building Code Requirements for Structural Concrete" with amendments per 2019 California Building Code, Chapter 19A, Section 1905A.
 - 4. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

1.6 ACCESSIBILITY REQUIREMENTS FOR PEDESTRIAN PAVING

- A. Concrete paving for accessible pedestrian routes for persons with disabilities shall comply with the following per 2019 California Building Code (CBC) requirements:
 - 1. Changes in Level: 1/4 inch maximum vertical change in level; changes greater than 1/4 inch to not more than 1/2 inch shall be beveled with a slope not exceeding 1:2 vertical to horizontal; offsets exceeding 1/2 inch shall be by a ramp (CBC 11B-303).
 - 2. Cross Slope of Walks and Ramps: 1/4:12 maximum (CBC 11B-403.3).
 - 3. Slope of Pedestrian Pavements: 1/4:12 maximum in any direction where there is no defined direction of travel (CBC 11B-403.3).
 - 4. Slope of Door and Ramp Landings: 1/4:12 maximum in any direction (CBC 11B-404.2.4.4 and 11B-405.7.1). Changes in level are not permitted within door and ramp landings.
 - 5. Slope of Parking Stalls and Access Aisles for Persons with Disabilities: 1/4:12 maximum in any direction (CBC 11B-502.4). Changes in level are not permitted within accessible parking stalls and access aisles.
 - 6. Slope of walks in the direction of travel: 1:20 (5%) maximum (CBC 11B-403.3).
 - 7. Slope of Ramps in the Direction of Travel: 1:12 (8.33%) maximum (CBC 11B-405.2).

8. With of Walks and Ramps: 48 inches minimum clear width (CBC 11B-403.5.1 and 11B-405.5).

PART 2 - PRODUCTS

2.1 FORM MATERIALS

- A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 - 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less. Do not use notched and bent forms.
- B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.2 STEEL REINFORCEMENT

- A. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from steel wire into flat sheets.
- B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60; deformed.
- C. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 plain-steel bars. Cut bars true to length with ends square and free of burrs.
- D. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
 - 1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.

2.3 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:
 - Portland Cement: Type II gray Portland Cement conforming to the specifications of ASTM C150-02a and the requirements of Caltrans Specification Section 90 for "Type II Modified" Portland Cement.
- B. Normal-Weight Aggregates: ASTM C 33, uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory

service in similar paving applications and service conditions using similar aggregates and cementitious materials.

- 1. Maximum Coarse-Aggregate Size: 1 inch nominal.
- 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Water: Potable and complying with ASTM C 94/C 94M.

2.4 CURING MATERIALS

- A. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- B. Water: Potable.
- C. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.
- D. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating. It shall be the Contractor's responsibility to verify that all curing compounds used comply with the VOC Emission requirements of the San Joaquin Valley Air Pollution Control District.

2.5 RELATED MATERIALS

A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber in preformed strips.

2.6 CONCRETE MIXTURES

- A. General: Concrete mixtures shall comply with requirements of authorities having jurisdiction.
- B. Mixtures for concrete pavements, gutters and curbs subject to vehicular traffic:
 - 1. Concrete shall be Class 2 (Previous years denoted as Class A) and shall contain 590 pounds minimum (6 sacks) of Portland Cement per cubic yard conforming to the requirements of Section 90 of the Caltrans Specifications.
 - a. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 - 2. Proportion mixtures to provide normal-weight concrete with the following properties:
 - a. Compressive Strength (28 Days): 3000 psi minimum.
 - b. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.50.
 - c. Slump Limit: 4 inches maximum.
- C. Mixtures for concrete walks, gutters and curbs subject to only pedestrian traffic:

- Concrete shall be Class 3 (Previous years denoted as Class B) and shall contain 505 pounds minimum (5 sacks) of Portland Cement per cubic yard conforming to the requirements of Section 90 of the Caltrans Specifications unless noted otherwise on the drawings.
 - a. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
- 2. Proportion mixtures to provide normal-weight concrete with the following properties:
 - a. Compressive Strength (28 Days): 2500 psi minimum.
 - b. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.58.
 - c. Slump Limit: 5 inches maximum.
- D. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement

2.7 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Furnish batch certificates for each batch discharged and used in the Work.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine exposed subgrades and base surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
- B. Proof-roll prepared base surface b elow concrete paving to identify soft pockets and areas of excess yielding.
 - 1. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph.
 - 2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
 - 3. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch according to requirements in Division 31 Section "Earth Moving."
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.
- C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.
- D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

3.5 JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 - 1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.
- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 - 1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
 - 2. Provide tie bars at sides of paving strips where indicated.
 - 3. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys as shown on the Drawings.
 - 4. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

- C. Isolation Joints: Form isolation joints of preformed joint-filler strips where noted on the Drawings.
 - 1. Extend joint fillers full width and depth of joint.
 - 2. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
 - 3. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 - 4. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
 - 5. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows:
 - 1. Grooved Joints: Form 1/4-inch wide contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch radius unless noted otherwise on the drawings. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces.
 - a. Tolerance: Ensure that grooved joints are within 3 inches either way from centers of dowels.
 - 2. Sawed Joints: Sawed joints shall not be used where concrete is permanently exposed to view.
 - a. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 - 1) Tolerance: Ensure that sawed joints are within 3 inches either way from centers of dowels.
- E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch radius unless noted otherwise on the Drawings. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.
- B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.

- C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.
- E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
- F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
- G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.
 - 1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement and dowels.
- H. Screed paving surface with a straightedge and strike off.
- I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
- J. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 - 1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
 - 2. Do not use frozen materials or materials containing ice or snow.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
- K. Hot-Weather Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:
 - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.

3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.7 CONCRETE FINISHING

- A. Float Finish: After initial floating during placement, begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.
 - 1. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.
 - 2. Ramps: Finish ramps with medium broom finish with direction perpendicular to the direction of travel.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

3.8 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 305 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- C. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
- D. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound or a combination of these as follows:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

- 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.
- 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.9 PAVING TOLERANCES

- A. Comply with tolerances in ACI 117 and as follows:
 - 1. Elevation: 1/4 inch.
 - 2. Thickness: Plus 3/8 inch. no minus.
 - 3. Surface: Gap below 10-foot- long, unleveled straightedge not to exceed 1/4 inch
 - 4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
 - 5. Lateral Alignment and Spacing of Dowels: 1 inch.
 - 6. Vertical Alignment of Dowels: 1/4 inch.
 - 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
 - 8. Joint Spacing: 3 inches.
 - 9. Contraction Joint Depth: Plus 1/4 inch, no minus.
 - 10. Joint Width for Grooved Joints: Plus 1/8 inch, no minus.
- B. Comply with tolerances per CBC Chapter 11B for accessible routes for persons with disabilities. Refer to regulatory requirements referenced in Part 1 Article "Accessibility Requirements for Pedestrian Paving" of this specification section.

3.10 FIELD QUALITY CONTROL

- A. Testing and Inspecting Agency: Owner will engage and pay for a qualified independent testing and inspecting agency to perform tests and inspections as applicable and prepare reports.
 - 1. Testing and Inspection Agency shall be acceptable to the Architect and the Division of the State Architect.
- B. The Architect and the Division of the State Architect shall have the right to order the testing of any materials used in the concrete construction to determine if they are of the quality specified.
- C. Contractor Responsibilities:
 - 1. The Contractor shall maintain control of the quality of materials and workmanship in order to conform with the drawings and specifications.
 - 2. To facilitate testing and inspection, the Contractor shall:

- a. Schedule tests and inspections with the Testing and Inspection Agency sufficiently in advance of operations to allow for the assignment of personnel and for the completion of testing and inspecting responsibilities.
- b. Provide access to the Work for the designated Testing and Inspection Agency.
- c. Furnish all necessary materials and labor to assist the designated Testing and Inspection Agency in obtaining and handling samples at the project or other sources of materials.
- d. Provide and maintain for the sole use of the Testing and Inspection Agency adequate facilities for safe storage and proper curing of concrete test specimens on the project site for the first 24 hr. as required by ASTM C31.
- 3. The Contractor shall correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.
- D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain at least one composite sample for each 5000 sq. ft. or fraction thereof of each concrete mixture placed each day.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 3. Air Content: ASTM C 231/C 231M, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite sample.
 - 5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
 - 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
 - a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.
- E. Strength of each concrete mixture will be satisfactory if the average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
- F. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of

- concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- G. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- H. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, compressive strengths, or other requirements have not been met, as directed by Architect.
- I. Concrete will be considered defective if it does not pass tests and inspections.
- J. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- K. Test and inspection reports are to be prepared and distributed by the testing agency.

3.11 REPAIRS AND PROTECTION

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
- B. Additional construction, testing, and replacement costs resulting from damaged or improperly installed infrastructure shall be paid for by the Contractor.
- C. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.
- D. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
- E. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION

SECTION 323113 CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Chain-link fences.
 - 2. Swing gates.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, gate hardware, and finishes for chain-link fences and gates.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.

1.4 QUALITY ASSURANCE

A. Accessible Gates: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines, ICC/ANSI A117.1, and the California Building Code.

B. QUALITY ASSURANCE

- Qualifications of Installer
 - a. Throughout the progress of installation of the work of this Section, provide at least one person who shall be thoroughly familiar with the specified requirements, completely trained and experienced in the necessary skills, and who shall be present at the site and shall direct all work performed under this Section.
 - b. In actual installation of the work of this Section, use adequate numbers of skilled workmen to insure installation in strict accordance with the contract documents.
 - c. In acceptance or rejection of work performed under this Section, the Engineer will make no allowance for lack of skill on the part of the workmen.

1.5 PROJECT CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.6 PRODUCT HANDLING

A. Protection

1. Use all means necessary to protect the materials of this Section before, during and after installation, and to protect the work of other trades.

B. Replacements

1. In the event of damage, immediately make all repairs and replacements necessary to the satisfaction of the Architect and at no additional cost to the Owner.

PART 2 - PRODUCTS

2.1 CHAIN-LINK FENCE FABRIC

- A. General: Provide chain link fence fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:
 - 1. Fabric Height: 8'-0" nominal.
 - 2. Wire diameter: 0.148 inches (9 gage).
 - 3. Mesh Size: 1.75 inches.
 - 4. Zinc-Coating: ASTM A 392, Type II, Class 1, 1.2 oz./sq. ft. with zinc coating applied after weaving.
 - 5. Selvage: Knuckled end closed at both selvages.

2.2 FENCE FRAMING

- A. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Heavy industrial strength round steel pipe, material Group IA, schedule 40, galvanized; pipe coated inside and outside by hot-dipped method, 1.8 oz. per square foot of surface; provide members with minimum dimensions and wall thickness according to ASTM F 1083 based on the following:
 - 1. Fence Height: As indicated on Drawings.
 - 2. Line Posts:
 - a. Fence height to 6 feet: 1.9 inches outside diameter, 2.72 plf.
 - b. Fence height over 6 feet to 8 feet: 2.375 inches outside diameter, 3.65 plf.
 - 3. End, Corner and Pull Posts:
 - a. Fence height to 6 feet: 2.375 inches outside diameter, 3.65 plf.

- b. Fence height over 6 feet to 8 feet: 2.875 inches outside diameter, 5.79 plf.
- 4. Gate Posts: Posts for individual gate leaf widths as follows:
 - a. Gate leaf width to 6 feet: 2.875 inches outside diameter, 5.79 plf.
 - b. Gate leaf width over 6 feet to 12 feet: 4.0 inch outside diameter, 9.11 plf.
- 5. Horizontal and Brace Rails: 1.66 inches outside diameter, 2.27 plf.

2.3 TENSION WIRE

A. Tension Wire: 0.177-inch diameter, marcelled steel tension wire complying with ASTM A 817 and ASTM A 824; Type II, zinc coated (galvanized), Class 4, not less than 1.2 oz./sq. ft. of uncoated wire surface.

2.4 SWING GATES

- A. General: Comply with ASTM F 900 for gate posts and swing gate types.
 - 1. Gate Height: Match fence height.
 - 2. Gate Leaf Width: As indicated on Drawings.
 - a. Pedestrian gates shall provide not less than 32 inches in clear width with the gate in a 90 degree open position.
- B. Gate Framing: Steel pipe matching fence framing and as follows:
 - 1. Gate leaf width up to 6 feet, perimeter framing: 1.90 inches outside diameter, 2.72 plf.
 - 2. Gate leaf width over 6 feet to 12 feet, perimeter framing: 2.375 inches outside diameter, 3.65 plf.
 - 3. Intermediate Framing and Bracing: 1.90 inches outside diameter, 2.72 plf.

C. Gate Construction:

- 1. Corner Construction: Assemble gates with corner fittings.
- 2. Bracing: Provide adjustable truss rod bracing for all gates and between intermediate framing members for gate leaves over 8 feet in width.
- 3. Intermediate Framing: Provide intermediate vertical framing for gates exceeding 8 feet in width; equally space intermediate framing and space not more than 8 feet on center.

D. Gate Hardware:

- 1. Hinges: 180-degree swing in direction indicated on Drawings.
- 2. Double Gates: The inactive leaf of double gates shall be provided with a drop rod and be capable of being locked with a padlock.
- 3. Gate Stops: Provide gates stops for each leaf of double gates.
- 4. Gate Keepers: Provide gate keepers for each gate leaf 5 feet or more in width.

2.5 FITTINGS

- A. Fittings, General: Comply with ASTM F 626.
- B. Post Caps: Caps shall be weatherproof to prevent moisture intrusion into posts. Provide line post caps with loop to receive top rail; provide for each post.
- C. Rail and Brace Ends: Designed to provide secure connection of top rails to terminal post and brace or other rails to terminal and intermediate posts; provide for each gate, corner, pull, and end post.
- D. Rail Fittings: Provide the following:
 - 1. Top Rail Sleeves: Pressed-steel or round-steel tubing not less than 6 inches long.
 - 2. Rail Clamps: Line and corner boulevard clamps for connecting intermediate rails in the fence line-to-line posts.
- E. Tension and Brace Bands: Pressed steel for posts up to 4 inches in outside diameter.
- F. Tension Bars: Steel, length not less than 2 inches shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.
- G. Truss Rod Assemblies: Steel, hot-dip galvanized after threading rod and turnbuckle or other means of adjustment; minimum 5/16 inch rod diameter.
- H. Tie-Wire: Standard round wire ties for attaching chain-link fabric to posts, rails, and frames; hot-dip galvanized steel, 0.148-inch (9 gage) diameter wire; galvanized coating thickness matching coating thickness of chain-link fence fabric.
- I. Hog Rings: Round wire ties for attaching chain-link fabric to bottom tension wire; 0.12-inch diameter of same material and finish as fabric wire.
- J. Finish: Metallic coating for pressed steel or cast iron fittings, not less than 1.2 oz. /sq. ft. zinc.

2.6 SETTING MATERIALS

- A. Cementitious Material: Portland cement, ASTM C 150, Type II, gray.
- B. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information. Proportion normal-weight concrete mixture as indicated below for strength, slump, water/cement ratio, and maximum aggregate size.
 - 1. Strength: 3000 psi at 28 days.
 - 2. Aggregate Size: 1-1/2 inch maximum.
 - 3. Slump: 4 inches.
 - 4. Water Cement Ratio: 0.53 Maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.
 - 1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 200 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 INSTALLATION, GENERAL

A. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.

3.4 FENCE FRAMING INSTALLATION

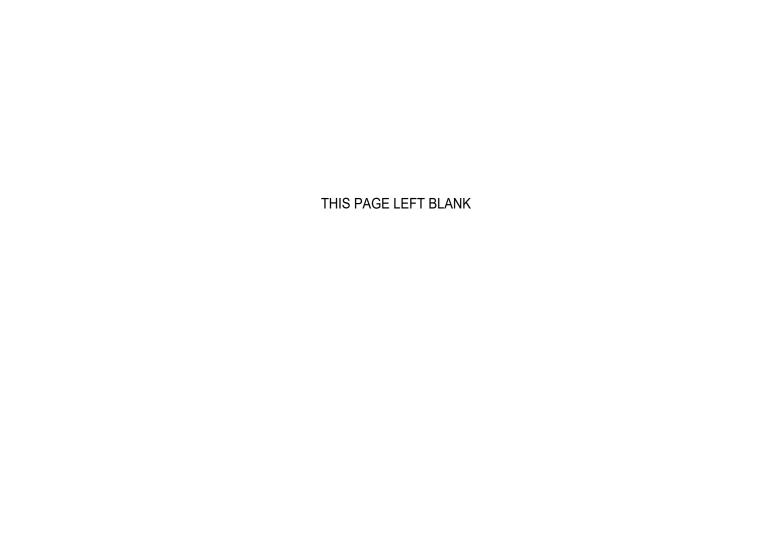
- A. Post Excavation and Footings: Drill or hand-excavate holes for posts to diameters, depths, and spacings indicated, in firm, undisturbed soil; if footing diameters and depths are not indicated, footings shall be as follows:
 - 1. Tops of footings shall be established as 4 inches below finish grade.
 - 2. Fences to 6 Feet in Height:
 - a. Line Posts: 10 inches diameter by 30 inches deep.
 - b. End, Corner, and Pull Posts: 10 inches diameter by 36 inches deep.
 - c. Gate Posts, Leaves to 6 Feet Wide: 12 inches diameter by 42 inches deep.
 - d. Gate Posts, Leaves over 6 Feet to 12 Feet Wide: 16 inches diameter by 48 inches deep.
- B. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.
 - 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 - 2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 - a. Comply with the following for posts in paved areas installed prior to paving:

- Posts in Concrete Paved Areas, Curbs, and Mow Strips: Coordinate top of paving elevation and pour concrete fill to approximately 6 inches below finish grade.
- Posts in Asphalt or Concrete Paved areas: Concrete fill to be flush with adjacent paving and crowned to shed water away from posts. Coordinate top of paving elevation and form top 6 inches of footing with round concrete form of diameter matching post footing; pour concrete fill prior to paving operations.
- b. Posts in Unpaved Areas: Concrete fill to be 2 inches above finish grade and crowned to shed water away from posts. Coordinate finish grade elevation and form top 6 inches of footing with round concrete form of diameter matching post footing.
- C. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 15 degrees or more.
- D. Line Posts: Space line posts uniformly and not to exceed 10 feet o.c. unless otherwise indicated.
- E. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.
 - 1. Locate horizontal braces at midheight of fabric 6 feet or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.
- F. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.
- G. Intermediate and Bottom Rails: Where indicated or required, install and secure to posts with fittings.
- H. Bottom Tension Wire: Install according to ASTM F 567 extended along and within 6 inches of bottom of fabric maintaining plumb position and alignment of fencing. Pull wire taut, without sags; install tension wire before stretching fabric; tie to each post with not less than same diameter and type of wire.

3.5 CHAIN-LINK FABRIC INSTALLATION

A. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 2 inches between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

- B. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts with tension bands spaced not more than 15 inches o.c.
- C. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing. Tie fabric to line posts at 12 inches o.c. and to braces at 24 inches o.c.
- D. Fasten fabric to tension wire with hog rings spaced a maximum of 24 inches o.c.
- E. Fasteners: Install nuts for tension bands and carriage bolts on the side of the fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts.


3.7 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

3.8 ADJUSTING

- A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.
- B. Lubricate hardware and other moving parts.

END OF SECTION

